MSA  Vol.7 No.2 , February 2016
Some Factors Influencing the Dielectric Properties of Natural Rubber Composites Containing Different Carbon Nanostructures
Abstract: Natural rubber based composites containing different carbon nanofillers (fullerenes, carbon nanotubes (CNTs) and graphene nanoplatelets (GNPs)) at different concentrations have been prepared. Their dielectric properties (dielectric permittivity, dielectric loss) have been studied in the 1 - 12 GHz frequency range. Some factors (electromagnetic field frequency, fillers concentration, fillers intrinsic structure) influencing the dielectric behavior of the composites have been investigated. The dielectric properties of the developed natural rubber composites containing conductive fillers (fullerenes, CNTs, GNPs) indicate that these composites can be used as broadband microwave absorbing materials.
Cite this paper: Al-Ghamdi, A. , Al-Hartomy, O. , Al-Solamy, F. , Dishovsky, N. , Zaimova, D. , Shtarkova, R. and Iliev, V. (2016) Some Factors Influencing the Dielectric Properties of Natural Rubber Composites Containing Different Carbon Nanostructures. Materials Sciences and Applications, 7, 108-118. doi: 10.4236/msa.2016.72011.

[1]   Qin, F. and Brosseau, C. (2012) A Review and Analysis of Microwave Absorption in Polymer Composites Filled with Carbonaceous Particles. Journal of Applied Physics, 111, 061301.

[2]   Dinesh, P., Renukappa, N., Pasang, T., Dinesh, M. and Rangananthaiah, C. (2014) Effect of Nanofillers on Conductivity and Electromagnetic Interference Shielding Effectiveness of High Density Polyethylene and Polypropylene Nanocomposites. European Journal of Advances in Engineering and Technology, 1, 16-28.

[3]   Shang, S.M., Zeng, W. and Tao, X.M. (2010) Highly Stretchable Conductive Polymer Composited With Carbon Nanotubes and Nanospheres. Advanced Materials Research, 123, 109-112.

[4]   Spitalsky, Z., Tasis, D., Papagelis, K. and Galiotis, C. (2010) Carbon Nanotube-Polymer Composites: Chemistry, Processing, Mechanical and Electrical Properties. Progress in Polymer Science, 35, 357-401.

[5]   Sun, Y., Bao, H.D., Guo, Z.X. and Yu, J. (2009) Modeling of the Electrical Percolation of Mixed Carbon Fillers in Polymer-Based Composites. Macromolecules, 42, 459-463.

[6]   Jeevanand, T., Kim, N.H., Lee, J.H., Siddaramaiah, B. Deepa Urs, M.V. and Ranganathaiah, C. (2009) Investigation of Multi-Walled Carbon Nanotube Reinforced High-Density Polyethylene/Carbon Black Nanocomposites Using Electrical, DSC and Positron Lifetime Spectroscopy Technique. Polymer International, 58, 775-780.

[7]   Yang, C., Lin, Y. and Nan, C.W. (2009) Modified Carbon Nanotube Composites with High Dielectric Constant, Low Dielectric Loss and Large Energy Density. Carbon, 47, 1096-1101.

[8]   Pierantoni, L., Mencarelli, D., Bozzi, M., Moro, R. and Bellucci, S. (2014) Graphene-Based Electronically Tuneable Microstrip Attenuator. IEEE MTT-S International Microwave Symposium (IMS), Tampa, 1-6 June 2014, 1-3.

[9]   De Bellis, G., De Rosa, I.M., Dinescu, A., Sarto, M.S. and Tamburrano, A. (2010) Electromagnetic Absorbing Nanocomposites Including Carbon Fibers, Nanotubes and Graphene Nanoplatelets. IEEE International Symposium on Electromagnetic Compatibility, Fort Lauderdale, 25-30 July 2010, 202-207.

[10]   Sohi, N.J.S., Rahaman, M. and Khastgir, D. (2011) Dielectric Property and Electromagnetic Interference Shielding Effectiveness of Ethylene Vinyl Acetate-Based Conductive Composites: Effect of Different Type of Carbon Fillers. Polymer Composites, 32, 1148-1154.

[11]   Peng, Z.H., Peng, J.C., Peng, Y.F. and Wang, J.Y. (2008) Complex Conductivity and Permittivity of Single Wall Carbon Nanotubes/Polymer Composite at Microwave Frequencies: A Theoretical Estimation. Chinese Science Bulletin, 53, 3497-3504.

[12]   Liu, L., Kong, L.B., Yin, W.Y., Chen, Y. and Matitsine, S. (2010) Microwave Dielectric Properties of Carbon Nanotube Composites. In: Marulanda, J.M., Ed., Carbon Nanotubes, InTech, Rijeka, 93-108.

[13]   Pozar, D. (2012) Microwave Engineering. Fourth Edition, John Wiley &Sons, Hoboken.

[14]   Dimiev, A., Zakhidov, D., Genorio, B., Oladimeji, K., Crowgey, B., Kempel, L., Rothwell, E.J. and Tour, J.M. (2013) Permittivity of Dielectric Composite Materials Comprising Graphene Nanoribbons. The Effect of Nanostructure. ACS Applied Materials & Interfaces, 5, 7567-7573.

[15]   Raihan, R., Rabbi, F., Vadlamudi, V. and Reifsnider, K. (2015) Composite Materials Damage Modeling Based on Dielectric Properties. Materials Sciences and Applications, 6, 1033-1053.

[16]   Li, Y., Zhu, J., Wei, S., Ryu, J., Wang, Q., Sun, L. and Guo, Z. (2011) Poly(propylene) Nanocomposites Containing Various Carbon Nanostructures. Macromolecular Chemistry and Physics, 212, 2429-2438.

[17]   Zhou, Z., Wa, S., Zhang, Y. and Zhang, Y. (2006) Effect of Different Carbon Fillers on the Properties of PP Composites: Comparison of Carbon Black with Multiwalled Carbon Nanotubes. Journal of Applied Polymer Science, 102, 4823-4830.

[18]   Thostenson, E., Li, C. and Chou, T. (2005) Nanocomposites in Context. Composites Science and Technology, 65, 491-516.

[19]   Guldi, D. and Martin, M. (Eds.) (2010) Carbon Nanotubes and Related Structures. Wiley-VCH Verlag, Weinheim.

[20]   Tjong, S. (2009) Carbon Nanotube Reinforced Composites. Wiley-VCH Verlag, Weinheim.

[21]   Harris, P. (2009) Carbon Nanotube Science-Synthesis, Properties and Application. Cambridge University Press, Cambridge.

[22]   Nieto, A., Lahiri, D. and Agarwal, A. (2012) Sythesis and Properties of Bulk Graphene Nanoplatelets Consolidated by Spark Plasma Sintering. Carbon, 50, 4068-4077.

[23]   Yadav, S. and Cho, J. (2013) Functional Graphene Nanoplatelets for Enhanced Mechanical and Thermal Properties. Applied Surface Science, 266, 360-367.

[24]   Krueger, A. (2010) Carbon Materials and Nanotechnology. Wiley-VCH Verlag, Weinheim.

[25]   Moniruzzaman, M. and Winey, K. (2006) Polymer Nanocomposites Containing Carbon Nanotubes. Macromolecules, 39, 5194-5205.

[26]   Li, Y., Zhu, J., Wei, S., Ryu, J., Sun, L. and Gu, Z. (2011) Poly(propylene)/Graphene Nanoplatelet Nanocomposites: Melt Rheological Behavior and Thermal, Electrical, and Electronic Properties. Macromolecular Chemistry and Physics, 212, 1951-1959.

[27]   Potts, J., Dreyer, D., Bielawski, C. and Ruoff, R. (2011) Graphene-Based Polymer Nanocomposites. Polymer, 52, 5-25.

[28]   Jurkovska, B., Jurkovski, B., Kamrovski, P., Pesetskii, S., Koval, V., Pinchuk, L. and Olkhov, Y. (2006) Properties of Fullerene-Containing Natural Rubber. Journal of Applied Polymer Science, 100, 390-398.

[29]   Jiang, M.-J., Dang, Z.-M., Bozlar, M., Miomandre, F. and Bai, J. (2009) Broad-Frequency Dielectric Behaviors in Multi-Walled Carbon Nanotubes/Rubber Nanocomposites. Journal of Applied Physics, 106, Article ID: 084902.

[30]   Meng, B., Booske, J. and Cooper, R. (1995) Extended Cavity Perturbation Technique to Determine the Complex Permittivity of the Dielectric Materials. IEEE Transactions on Microwave Theory and Techniques, 43, 2633-2636.

[31]   Kumar, A. and Sharma, S. (2007) Measurement of Dielectric Constant and Loss Factor of the Dielectric Material at Microwave Frequencies. Progress in Electromagnetics Research, 69, 47-54.

[32]   Debye, P. (1929) Polar Molecules. The Chemical Catalogue Company, New York.