Back
 MSA  Vol.7 No.2 , February 2016
Investigating the Relationship between Porosity and Permeability Coefficient for Pervious Concrete Pavement by Statistical Modelling
Abstract: A study evaluating the relationship between porosity and permeability coefficient for pervious concrete (PC) is presented. In addition, the effect of mixture design parameters particularly, water-to-cement ratio (W/C) and size of aggregate on the permeability coefficient of PC was investigated. The PC mixtures were made with 4 range of W/C and 2 range size of aggregate. PC mixes were made from each aggregate and were tested. The results showed that the W/C and aggregate size are key parameters which significantly affect the characteristic performance of PC. Permeability coefficient of coarse pervious concrete (CPC) is bigger than fine pervious concrete (FPC) and the porosity of CPC are bigger than porosity of FPC. A regression model (RM) along with analysis of variance (ANOVA) was conducted to study the significance of porosity distribution on permeability coefficient of PC. The statistical model developed in this study can facilitate prediction permeability coefficient of CPC and FPC as the sustainable pavements.
Cite this paper: Ghashghaei, H. and Hassani, A. (2016) Investigating the Relationship between Porosity and Permeability Coefficient for Pervious Concrete Pavement by Statistical Modelling. Materials Sciences and Applications, 7, 101-107. doi: 10.4236/msa.2016.72010.
References

[1]   Vassilikou, F., Kringos, N. and Kotsovos Scarpes, A. (2011) Application of Pervious Concrete for Sustainable Pavements: A Micro-Mechanical Investigation. TRB 90th Annual Meeting, Washington DC, 23-27 January 2011, 11-0695.

[2]   Lian, C. and Zhuge, Y. (2010) Optimum Mix Design of Enhanced Permeable Concrete—An Experimental Investigation. Construction and Building Materials, 24, 2664-2671.
http://dx.doi.org/10.1016/j.conbuildmat.2010.04.057

[3]   Vancura, M., Mc Donald, K. and Khazanovich, L. (2011) Microscopic Analysis of Paste and Aggregate Distress in Pervious Concrete in a Wet, Hard Freeze Climate. Cement and Concrete Composites, 33, 1080-1085.
http://dx.doi.org/10.1016/j.cemconcomp.2011.05.011

[4]   Sumanasooriya, M.S. and Neithalath, N. (2011) Pore Structure Features of Pervious Concrete Proportioned for Desired Porosities and Their Performance Prediction. Cement and Concrete Composites, 33, 778-787.
http://dx.doi.org/10.1016/j.cemconcomp.2011.06.002

[5]   Suozzo, M. and Dewoolkar, M. (2012) Long-Term Field Monitoring and Evaluation of Maintenance Practice of Pervious Concrete Pavements in Vermont. TRB 91st Annual Meeting, 2292.
http://dx.doi.org/10.3141/2292-12

[6]   Shu, X., Huang, B., Wu, H, Dong, Q. and Burdette, E.G. (2011) Performance Comparison of Laboratory and Field Produced Pervious Concrete Mixtures. Construction and Building Materials, 25, 3187-3192.
http://dx.doi.org/10.1016/j.conbuildmat.2011.03.002

[7]   Boyer, M., Haselbach, L. and Cofer, W. (2012) Heat Transfer Finite Element Modeling in Pervious Concrete: Impacts of Vertical Porosity Distributions. TRB 91st Annual Meeting, Washington DC, 22-26 January 2012, 12-1241.

[8]   Shen, S., Burton, M., Jobson, B. and Haselbach, L. (2012) Pervious Concrete with Titanium Dioxide as a Photo Catalyst Compound for a Greener Urban Road Environment. TRB 91st Annual Meeting, Washington DC, 22-26 January 2012.

[9]   Tho-in, T., Sata, V., Chindprasirt, P. and Jaturapitakkul, C. (2012) Pervious High-Clacium Fly Ash Geopolymer Concrete. Construction and Building Materials, 30, 366-371.
http://dx.doi.org/10.1016/j.conbuildmat.2011.12.028

[10]   ASTM Standard C 192. (2012) Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory Concrete, Cylinders, Laboratory, Prisms, Strength Testing. ASTM International, West Conshohocken, PA.

[11]   Park, S.-B. and Tia, M. (2004) An Experimental Study on the Water-Purification Properties of Porous Concrete. Cement and Concrete Research, 34, 177-184.
http://dx.doi.org/10.1016/S0008-8846(03)00223-0

 
 
Top