[1] Gerwick, B. and Sparks, T. (2010) Natural Products for Pest Control: An Analysis of Their Role, Value and Future. Pest Management Science, 70, 1169-1185. http://dx.doi.org/10.1002/ps.3744
[2] Thatoi, H., Behera, B. and Mishra, R. (2013) Ecological Role and Biotechnological Potential of Mangrove Fungi: A Review. Mycology, 4, 54-71.
[3] Kaul, S., Gupta, S., Ahmed, M. and Dhar, M. (2012) Endophytic Fungi from Medicinal Plants: A Treasure Hunt for Bioactive Metabolites. Phytochemistry Reviews, 11, 487-505.
http://dx.doi.org/10.1007/s11101-012-9260-6
[4] Deepa, J. and Gleena, M. (2014) Secondary Metabolites of Microbials as Potential Source of Agrochemicals. International Journal of Current Research, 6, 5355-5363.
[5] Lievens, K., Van Rijsbergen, R., Leyns, F., Lambert, B., Tenning, P., Swings, J. and Joos, H. (1989) Dominant Rhizosphere Bacteria as a Source for Antifungal Agents. Pest Management Science, 27, 141-154. http://dx.doi.org/10.1002/ps.2780270205
[6] Tanaka, Y. and Omura, S. (1993) Agroactive Compounds of Microbial Origin. Annual Review of Microbiology, 47, 57-87. http://dx.doi.org/10.1146/annurev.mi.47.100193.000421
[7] Evidente, A. and Abouzeid, M.A. (2006) Characterization of Phytotoxins from Phytopathogenic Fungi and Their Potential Use as Herbicides in Integrated Crop Management. In: Singh, H.P., Batish, D.R. and Kohli, R.K., Eds., Handbook of Sustainable Weed Management, The Harworth Press Inc., New York, 507-532.
[8] Marrone, P. (2008) Natural Products from Microorganisms and Plants as Alternatives to Synthetic Chemical Pesticides. In: Laudon, M. and Romanowicz, B., Eds., Clean Technology 2008: Bio Energy, Renewables, Green Building, Smart Grid, and Water, Technical Proceedings of the CTSI Clean Technology and Sustainable Industries Conference and Trade Show, Boston, June 1-5 2008, 612-615.
[9] Duke, S.O. and Dayan, F.E. (2015) Discovery of New Herbicides Modes of Action with Natural Phytotoxins. American Chemical Society Symposium Series, in press. http://dx.doi.org/10.1021/bk-2015-1204.ch007
[10] Routray, W. and Rayaguru, K. (2010) Chemical Constituents and Post-Harvest Prospects of Pandanus amaryllifoliu Leaves: A Review. Food Reviews International, 26, 230-245.
http://dx.doi.org/10.1080/87559129.2010.484114
[11] Wongpornchai, S. (2006) Pandan wangi. In: Peter, K., Ed., Handbook of Herbs and Spices. Vol. 3, Woodhead Publishing Limited, Abington Hall, Abington Cambridge England, 453-459.
http://dx.doi.org/10.1533/9781845691717.3.453
[12] Zhan, J., Wijeratne, E.M.K., Seliga, C.J., Zhang, J., Pierson, E.E., Pierson, L.S.III, Vanetten, H.D.and Gunatilaka, A.A.L. (2004) A new Anthraquinone and Cytotoxic Curvularins of a Penicillium sp. from the Rhizosphere of Fallugia paradoxa of the Sonoran Desert. Journal of Antibiotics, 57, 341-344.
http://dx.doi.org/10.7164/antibiotics.57.341
[13] Ghisalberti, E.L., Hockless, D.C.R., Rowland, C.Y. and White, A.H. (1993) Structural Study of Curvularin. Australian Journal of Chemistry, 46, 571-575. http://dx.doi.org/10.1071/CH9930571
[14] Dayan, F.E., Romagni, J.G. and Duke, S.O. (2000) Investigating the Mode of Action of Naturalphytotoxins. Journal of Chemical Ecology, 26, 2079-2094.
http://dx.doi.org/10.1023/A:1005512331061
[15] Michel, A., Johnson, R.D., Duke, S.O. and Scheffler, B.E. (2004) Dose-Response Relationships between Herbicides with Different Modes of Action and Growth of Lemna paucicostata: An Improved Ecotoxicological Method. Environmental Toxicology and Chemistry, 231, 1074-1079.
http://dx.doi.org/10.1897/03-256
[16] Duke, S.O. and Kenyon, W.H. (1993) Peroxidizing Activity Determined by Cellular Leakage. In: Böger, P. and Sandmann, G., Eds., Target Assays for Modern Herbicides and Relate Phytotoxic Compounds, CRC Press, Boca Raton, 61-66.
[17] Dayan, F.E. and Watson, S.B. (2011) Plant Cell Membrane as a Marker for Light-Dependent and Light-Independent Herbicide Mechanisms of Action. Pesticide Biochemistry and Physiology, 101, 182-190. http://dx.doi.org/10.1016/j.pestbp.2011.09.004
[18] Jiang, S.-J., Qiang, S., Zhu, Y.-Z. and Dong, Y.-F. (2008) Isolation and Phytotoxicity of a Metabolite from Curvularia eragrostidis and Characterisation of Its Modes of Action. Annals of Applied Biology, 152, 103-111. http://dx.doi.org/10.1111/j.1744-7348.2007.00202.x
[19] Kobayashi, A., Hino, T., Yata, S., Itoh, T.J., Sato, H. and Kawazu, K. (1988) Unique Spindle Poisonscurvularin and Its Derivatives, Isolated from Penicillium Species. Agricultural and Biological Chemistry, 52, 3119-3123. http://dx.doi.org/10.1271/bbb1961.52.3119
[20] Ghisalberti, E.L. and Rowland, C.Y. (1993) 6-Chlorodehydrocurvularin, a New Metabolite from Cochliobolus spicifer. Journal of Natural Products, 56, 2175-2177.
http://dx.doi.org/10.1021/np50102a022
[21] Vurro, M., Evidente, A., Andolfi, A., Zonno, M.C., Giordano, F. and Motta, A. (1998) Brefeldin A and α,β-Dehydro-curvularin, Two Phytotoxins from Alternaria zinniae, a Biocontrol Agent of Xanthium occidentale. Plant Science, 138, 67-79. http://dx.doi.org/10.1016/S0168-9452(98)00131-9
[22] Robeson, D.J. and Strobel, G.A. (1981) αβ-Dehydrocurvularin and Curvularin from Alternaria cinerariae. Zeitschrift für Naturforschung C: A Journal of Bioscience, 36, 1081-1083.
[23] Kusano, M., Nakagami, K., Fujioka, S., Kawano, T., Shimada, A. and Kimura, Y. (2003) βγ-Dehydrocurvularin and Related Compounds as Nematacides of Pratylenchus penetrans from the Fungus Aspergillus sp. Bioscience, Biotechnology and Biochemistry, 67, 1413-1416.
http://dx.doi.org/10.1271/bbb.67.1413
[24] Gutierrez, M., Theoduloz, C., Rodriguez, J., Lolas, M. and Schmeda, H.G. (2005) Bioactive Metabolites from the Fungus Nectria galligena, the Main Apple Canker Agent in Chile. Journal of Agricultural and Food Chemistry, 53, 7701-7708. http://dx.doi.org/10.1021/jf051021l
[25] Tilley, A.M. and Walker, H.L. (2002) Evaluation of Curvularia intermedia (Cochliobolus intermedius) as a Potential Microbial Herbicide for Large Crabgrass (Digitaria sanguinalis). Biological Control, 25, 12-21. http://dx.doi.org/10.1016/S1049-9644(02)00035-X
[26] Zhu, Y. and Qiang, S. (2004) Isolation, Pathogenicity and Safety of Curvularia eragrostidis Isolate QZ-2000 as a Bioherbicide Agent for Large Crabgrass (Digitaria sanguinalis). Biocontrol Science and Technology, 14, 769-782. http://dx.doi.org/10.1080/09583150410001720699
[27] Xu, Y., Zhou, T., Zhang, S., Espinosa, A.P., Wang, L., Zhang, W., Lin, M., Leslie Gunatilaka, A.A.L., Zhan, J. and Molnar, I. (2014) Diversity-Oriented Combinatorial Biosynthesis of Benzenediol Lactone Scaffolds by Subunit Shuffling of Fungal Polyketide Synthases. Proceedings of the National Academy of Sciences, 111, 12354-12359. http://dx.doi.org/10.1073/pnas.1406999111
[28] Liu, Y., Li, Z. and Vederas, J.C. (1988) Biosynthetic Incorporation of Advanced Precursors into Dehydrocurvularin, a Polyketide Phytotoxin from Alternaria cinerariae. Tetrahedron, 54, 15937-15958. http://dx.doi.org/10.1016/S0040-4020(98)01003-5
[29] Xu, J., Jiang, C.-S., Zhang, Z.-L., Ma, W.-Q. and Guo, Y.-W. (2014) Recent Progress Regarding the Bioactivities, Biosynthesis and Synthesis of Naturally Occurring Resorcinolic Macrolides. Acta Pharmacologica Sinica, 35, 316- 330. http://dx.doi.org/10.1038/aps.2013.155
[30] Winssinger, N., Fontaine, J.G. and Barluenga, S. (2009) Hsp90 Inhibition with Resorcyclic Acidlactones (RALs). Current Topics in Medicinal Chemistry, 9, 1419-1435.
http://dx.doi.org/10.2174/156802609789895665