Back
 AS  Vol.7 No.2 , February 2016
The Effect of Maize Grain Size on the Physicochemical Properties of Isolated Starch, Crude Maize Flour and Nixtamalized Maize Flours
Abstract: Usually, the maize cob is formed by grains of medium size. However, the extremes have larger or smaller size grains. The objective of this study was to investigate the influence of grain size from the same hybrid on the physicochemical properties of isolated starch, crude maize flours and nixtamalized maize flours. Two hybrids, one from CIMMyT-Mexico called IMIC-254 and one commercial sample from Monsanto (Puma) were studied. The isolated starch granules from small, medium, and large grains exhibit the same size and distribution. The grain size has influence in the determination of cooking and steeping times; small grains reach these parameters faster than medium and large ones. The hardness of the grain size for both hybrids does not showed statistical differences between them. The starch from small, medium and large grains is mainly composed of amylopectin; this result is confirmed by X-ray diffraction and Megazine analysis. The apparent viscosity of the isolated starches of small grains showed statistically significant higher peak values. According to these results, it is possible to use small, medium, and large grains to obtain products with the same physicochemical properties, by adjusting the cooking and steeping times and Ca2+ content.
Cite this paper: Vega-Rojas, L. , Contreras-Padilla, M. , Rincon-Londoño, N. , Real López, A. , Lima-Garcia, R. , Palacios-Rojas, N. and Rodriguez-Garcia, M. (2016) The Effect of Maize Grain Size on the Physicochemical Properties of Isolated Starch, Crude Maize Flour and Nixtamalized Maize Flours. Agricultural Sciences, 7, 114-125. doi: 10.4236/as.2016.72011.
References

[1]   Duarte, A., Mason, S., Jackson, D. and Kiehl, J. (2005) Grain Quality of Brazilian Maize Genotypes as Influenced by Nitrogen Level. Crop Science, 45, 1958-1964.
http://dx.doi.org/10.2135/cropsci2004.0587
http://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1114&context=foodsciefacpub


[2]   Vázquez-Carrillo, G., Santiago-Ramos, D., Salinas-Moreno, Y., Rojas-Martínez, I., Arellano-Vázquez, J.L., Velázquez-Cardenas, G.A. and Espinosa-Calderon, A. (2012) Interaccin genotipo-ambientedel rendimiento y calidad de grano y tortilla de hibridos de maíz en valles altos de Tlaxcala, México [Genotype-Environment Interaction of Yield and Grain and Tortilla Quality of Maize Hybrids at the Highlands of Tlaxcala, México]. Revista Fitotécnica Mexicana, 35, 229-237.
https://www.researchgate.net/publication/260437277

[3]   Miranda, A., Vásquez-Carrillo, G., García-Lara, S., San Vicente, F., Torres, J.L., Ortiz-Islas, S., Salinas-Moreno, Y. and Palacios-Rojas, N. (2013) Influence of Genotype and Environmental Adaptation into the Maize Grain Quality Traits for Nixtamalization. CyTA—Journal of Food, 11, 54-61.
http://dx.doi.org/10.1080/19476337.2013.763862

[4]   Gutiérrez, E., Rojas-Molina, I., Pons-Hernández, J.L., Guzmán, H., Aguas-ángel, B., Arenas, J., Fernández, P., Palacios-Fonseca, A., Herrera, G. and Rodríguez, M.E. (2007) Study of Calcium Ion Diffusion in Nixtamalized Quality Protein Maize as a Function of Cooking Temperature. Cereal Chemistry, 84, 186-194.
http://dx.doi.org/10.1094/CCHEM-84-2-0186

[5]   Rojas-Molina, I., Gutierrez-Cortez, E., Palacios-Fonseca, A., Baños, L., Pons-Hernández, J.L., Pineda-Gómez, P. and Rodríguez-Garcia, M.E. (2007) Study of Structural and Thermal Changes in Endosperm of Quality Protein Maize During Traditional Nixtamalization Process. Cereal Chemistry, 84, 304-312.
http://dx.doi.org/10.1094/CCHEM-84-4-0304

[6]   Palacios-Fonseca, A.J., Vazquez-Ramos, C. and Rodríguez-García, M.E. (2009) Physicochemical Characterizing of Industrial and Traditional Nixtamalized Corn Flours. Journal of Food Engineering, 93, 45-51.
http://www.sciencedirect.com/science/article/pii/S0260877408006122
http://dx.doi.org/10.1016/j.jfoodeng.2008.12.030


[7]   AACC (2000) Approved Methods. American Association of Cereal Chemists, St. Paul, MN, USA. Methods 46-13.

[8]   AOAC (2000) Official Methods of Analysis. 17th Edition, The Association of Official Analytical Chemists, Gaithersburg, MD, USA. Methods 925.10, 65.17, 974.24, 992.16.

[9]   AACC (2000) Approved Methods. American Association of Cereal Chemists, St. Paul, MN, USA. Methods 08-01 30-25 and 46-13.

[10]   AOAC (1998) Official Methods of Analysis. 16th Edition, Official Association of Official Analytical Chemists, Maryland, USA. Method 968.08.

[11]   McCleary, B.V., Solah, V. and Gibson, T.S. (1994) Quantitative Measurement of Total Starch in Cereal Flours and Products. Journal of Cereal Science, 20, 51-58.
http://dx.doi.org/10.1006/jcrs.1994.1044
http://www.sciencedirect.com/science/article/pii/S0733521084710447


[12]   Gibson, T.S., Solah, V.A. and McCleary, B.V. (1997) A Procedure to Measure Amylose in Cereal Starches and Flours with Concanavalin. American Journal of Cereal Science, 25, 111-119.
http://dx.doi.org/10.1006/jcrs.1996.0086
http://www.sciencedirect.com/science/article/pii/S0733521096900867


[13]   Valderrama-Bravo, C., Rojas-Molina, A., Gutiérrez-Cortez, E., Rojas-Molina, I, Oaxaca-Luna, A, De la Rosa-Rincón, E. and Rodríguez-García, M.E. (2010) Mechanism of Calcium Uptake in Corn Kernels During the Traditional Nixtamalization Process: Diffusion, Accumulation and Percolation. Journal of Food Engineering, 98, 126-132.
http://www.sciencedirect.com/science/article/pii/S0260877409006116
http://dx.doi.org/10.1016/j.jfoodeng.2009.12.018


[14]   Imberty, A., Chanzy, H., Perez, S., Burleon, A. and Tran, V. (1988) The Double-Helical Nature of the Crystalline Part of A-Starch. Journal of Molecular Biology, 201, 365-378.
http://www.ncbi.nlm.nih.gov/pubmed/3418703
http://dx.doi.org/10.1016/0022-2836(88)90144-1


[15]   Fernández-Muñoz, J.L., Rojas-Molina, I., González-Dávalos, M.L., Leal, M., Valtierra, M.E., San Martín-Martínez, E. and Rodríguez, M.E. (2004) Study of Calcium Ion Diffusion in Components of Maize Kernels During Traditional Nixtamalization Process. Cereal Chemistry, 81, 65-69.
http://dx.doi.org/10.1094/CCHEM.2004.81.1.65

 
 
Top