Back
 JAMP  Vol.4 No.2 , February 2016
Correlation between the Low-Temperature Photoluminescence Spectra and Photovoltaic Properties of Thin Polycrystalline CdTe Films
Abstract: A dominant intrinsic luminescence band, which is due to the surface potential barriers of crystalline grains, and an edge doublet, which arises as an LO-phonon repetition of the e-h band, has been revealed in the low-temperature photoluminescence spectra of fine-grained obliquely deposited films. Doping film with In impurity leads to quenching of the doublet band, while further thermal treatment causes activation of the intrinsic band, the half-width and the blue shift of the red edge of which correlates with the maximum value of anomalously high photovoltage generated by the film.
Cite this paper: Akhmadaliev, B. , Mamatov, O. , Polvonov, B. and Yuldashev, N. (2016) Correlation between the Low-Temperature Photoluminescence Spectra and Photovoltaic Properties of Thin Polycrystalline CdTe Films. Journal of Applied Mathematics and Physics, 4, 391-397. doi: 10.4236/jamp.2016.42046.
References

[1]   Kvit, A.V., Klevkov, Yu.V., Medvedov, S.A., Bagaev, V.S., Perestoronin, A. and Plotnikov, A.F. (2000) Evolution of Photoluminescence Spectra of Stoichiometric CdTe: Dependence on the Purity of Starting Components. Semiconductors, 34, 17-20.
http://dx.doi.org/10.1134/1.1187955

[2]   Bagaev, V.S., Klevlov, Yu.V., Kolosov, S.A., Krivobok, V.S. and Shepeli, A.A. (2010) Optical and Electrophysical Properties of Defects in High-Purity CdTe. Physics of the Solid State, 52, 37-42.
http://dx.doi.org/10.1134/S1063783410010075

[3]   Ushakov, V.V. and Klevkov, Yu.V. (2003) Microphotoluminescence Spectra of Cadmium Telluride Grown under Nonequilibrium Conditions. Electronic and Optical Properties of Semiconductors, 37, 1042-1046.

[4]   Ushakov, V.V. and Klevkov, Yu.V. (2003) Effect of Grain Boundaries on the Properties of Cadmium Telluride Grown under Nonequilibrium Conditions. Semiconductors, 37, 1259-1263.
http://dx.doi.org/10.1134/1.1626204

[5]   Veleschuk, V.P., Baydullaeva, A., Vlasenko, A.I., Gnatyuk, V.A., Dauletmuratov, B.K., Levickiy, S.N., Lyashenko, O.V. and Aoki, T. (2010) Mass Transfer of Indium in the In-CdTe Structure under Nanosecond Laser Irradiation. Physics of the Solid State, 52, 439-445.

[6]   Permogorov, S.A., Surkova, T.P. and Tenishev, A.N. (1998) Exciton Luminescence of Cd1-xFexTe Solid Solution. Physics of the Solid State, 40, 826-828.
http://dx.doi.org/10.1134/1.1130412

[7]   Karimov, M.A. and Yuldashev, N.Kh. (2007) Obliquely Deposited CdTe:In Films with Anomalous Photovoltaic Properties. Journal Russian Academy of Science: Physics, 71, 1151-1153.

[8]   Karimov, M.A. and Yuldashev, N.Kh. (2006) Indium Admixture Influence Onphoto-Voltaic Properties of Slanting Deposited Films CdTe. Physical Surface Engineering, 2, 58-62.

[9]   Gavrilenko, V.I., Grehov, A.M., Korbutyak, D.V. and Litovchenko, V.G. (1987) The Optical Features of Semiconductors. The Reference Book, Naukova, Kiev, 410, 414.

[10]   Georgobiani, A.N. and Sheynkman, M.K. (1986) In b.: Physics of the Joins. Science, Moscow, Exhibit, 292.

[11]   Zuev, V.A., Sheinkman, A.V. and Tolpygo, K.B. (1977) Nonequlirium Surface Processes in Semiconductors and Semiconductor Instruments. Soviet Radio, Moscow, 116.

[12]   Matveev, O.A. and Terentev, A.I. (1998) Self-Compensation in CdTe〈Cl〉 in the Presence of Phase Equilibrium of the System Crystal-Cadmium (Tellurium) Vapor. Semiconductors, 32, 159-162.
http://dx.doi.org/10.1134/1.1187335

 
 
Top