Back
 JAMP  Vol.4 No.2 , February 2016
Exponentially-Fitted 2-Step Simpson’s Method for Oscillatory/Periodic Problems
Abstract: Following a six-step flow chart, exponentially-fitted variant of the 2-step Simpson’s method suitable for solving ordinary differential equations with periodic/oscillatory behaviour is constructed. The qualitative properties of the constructed methods are also investigated. Numerical experiments on standard problems confirming the theoretical expectations regarding the constructed methods compared with other existing standard methods are also presented. Our results unify and improve the existing classical 2-step Simpson’s method.
Cite this paper: Wusu, A. , Olufemi, B. and Adebowale, A. (2016) Exponentially-Fitted 2-Step Simpson’s Method for Oscillatory/Periodic Problems. Journal of Applied Mathematics and Physics, 4, 368-375. doi: 10.4236/jamp.2016.42043.
References

[1]   Akanbi, M.A. (2011) On 3-Stage Geometric Explicit Runge-Kutta Method for Singular Autonomous Initial Value Problems in Ordinary Differential Equations. Computing, 92, 243-263.

[2]   Butcher, J.C. (2008) Numerical Methods for Ordinary Differential Equations. Wiley.
http://dx.doi.org/10.1002/9780470753767

[3]   Lambert, J.D. (1973) Computational Methods in ODEs. Wiley, New York.

[4]   Wusu, A.S. and Akanbi, M.A. (2013) A Three-Stage Multiderivative Explicit Runge-Kutta Method. American Journal of Computational Mathematics, 3, 121-126.
http://dx.doi.org/10.4236/ajcm.2013.32020

[5]   Wusu, A.S., Akanbi, M.A. and Fatimah, B.O. (2015) On the Derivation and Implementation of a Four Stage Harmonic Explicit Runge-Kutta Method. Applied Mathematics, 6, 694-699.
http://dx.doi.org/10.4236/am.2015.64064

[6]   Ixaru, L.G. and Vanden, B.G. (2004) Exponential Fitting Mathematics and Its Applications. Kluwer Academic Publishers, 568.
http://dx.doi.org/10.1007/978-1-4020-2100-8

[7]   Simos, T.E. (1998) An Exponentially-Fitted Runge-Kutta Method for the Numerical Integration of Initial-Value Problems with Periodic or Oscillating Solutions. Computer Physics Communications, 115, 1-8.
http://dx.doi.org/10.1016/S0010-4655(98)00088-5

[8]   Vanden, B.G. and Daele, M.V. (2006) Exponentially-Fitted Stomer/Verlet Methods. Journal of Numerical Analysis, Industrial and Applied Mathematics, 1, 241-255.

[9]   Liniger, W.S. and Willoughby, R.A. (1970) Efficient Integration Methods for Stiff System of ODEs. SIAM Journal on Numerical Analysis, 7, 47-65.
http://dx.doi.org/10.1137/0707002

[10]   Jackson, L.W. and Kenue, S.K. (1974) A Fourth Order Exponentially-Fitted Method. SIAM Journal on Numerical Analysis, 11, 965-978.

[11]   Cash, J.R. (1981) On Exponentially Fitting of Composite Multiderivative Linear Methods. SIAM Journal on Numerical Analysis, 18, 808-821.
http://dx.doi.org/10.1137/0718055

[12]   Avdelas, G., Simos, T.E. and Vigo-Aguiar, J. (2000) An Embedded Exponentially-Fitted Runge-Kutta Method for the Numerical Solution of the Schrödinger Equation and Related Periodic Initial-Value Problems. Computer Physics Communications, 131, 52-67.
http://dx.doi.org/10.1016/S0010-4655(00)00080-1

[13]   Bettis, D.G. (1979) Runge-Kutta Algorithms for Oscillatory Problems. Journal of Applied Mathematics and Physics (ZAMP), 30, 699-704.
http://dx.doi.org/10.1007/BF01590846

[14]   Coleman, J.P. and Duxbury, S.C. (2000) Mixed Collocation Methods for y” = (x;y). Journal of Computational and Applied Mathematics, 126, 47-75.
http://dx.doi.org/10.1016/S0377-0427(99)00340-4

[15]   Franco, J.M. (2002) An Embedded Pair of Exponentially Fitted Explicit Runge-Kutta Methods. Journal of Computational and Applied Mathematics, 149, 407-414.
http://dx.doi.org/10.1016/S0377-0427(02)00485-5

[16]   Vanden, B.G., Meyer, H.D., Daele, M.V. and Hecke, T.V. (1999) Exponentially-Fitted Explicit Runge-Kutta Methods. Computer Physics Communications, 123, 7-15.
http://dx.doi.org/10.1016/S0010-4655(99)00365-3

[17]   Vanden, B.G., Meyer, H.D., Daele, M.V. and Hecke, T.V. (2000) Exponentially-Fitted Explicit Runge-Kutta Methods. Computer Physics Communications, 125, 107-115.

 
 
Top