OALibJ  Vol.1 No.2 , May 2014
Parallel Calculation of the Electron Correlation Energy
Abstract: Calculation of electron correlation energy in molecules involves a very important computational effort, even in the simplest cases. Nowadays, using the new parallel libraries (PETSc and SLEPc) and MPI, we can resolve this calculation faster and with very big molecules. This result is a very important advance in chemical computation.
Cite this paper: Ramos, E. (2014) Parallel Calculation of the Electron Correlation Energy. Open Access Library Journal, 1, 1-15. doi: 10.4236/oalib.1100411.

[1]   McWeeny (1992) Methods in Computational Molecular Physics. Plenum Press, London.

[2]   Maynau, D. and Heully, J.L. (1993) Second-Order Perturbation on a SDCI Calculation. Chemical Physics Letters, 211, 625-630.

[3]   Sánchez-Marn, J., Maynau, D. and Malrieu, J.P. (1993) Theoretica Chimica Acta, 87.

[4]   McWeeny (1987) Ab Initio Methods in Quantum Chemistry. Part I and Part II, John Willey and Sons, New York.

[5]   Dupuis, M., Rys, J. and King, H.F.J. (1976) Chemical Physics, 65, 111.

[6]   Malrieu, J.P., Durand, P. and Daudey, J.P. (1985) Intermediate Hamiltonians as a New Class of Effective Hamiltonians. Journal of Physics A: Mathematical and General, 18, 809.

[7]   Malrieu, J.P., Nebot-Gil, I. and Sánchez-Marn, J. (1994) Elementary Presentation of Self-Consistent Intermediate Hamiltonians and Proposal of Two Totally Dressed Singles and Doubles Configuration Interaction Methods. The Journal of Chemical Physics, 100, 1440.

[8]   Parlett, B.N. (1998) The Symmetric Eigenvalue Problem. Prentice-Hall, Englewood Cliffs.

[9]   Bai, Z., Demmel, J., Dongarra, J., Ruhe, A. and van der Vorst, H. (Eds.) (2000) Templates for the Solution of Algebraic Eigenvalue Problems: A Practical Guide. Society for Industrial and Applied Mathematics, Philadelphia.

[10]   Wu, K. and Simon, H. (2000) Thick-Restart Lanczos Method for Large Symmetric Eigenvalue Problems. SIAM Journal on Matrix Analysis and Applications, 22, 602-616.

[11]   Hernandez, V., Roman, J.E. and Vidal, V. (2005) SLEPc: A Scalable and Flexible Toolkit for the Solution of Eigenvalue Problems. ACM Transactions on Mathematical Software, 31, 351-362.

[12]   Gilbert, D., Roman, J.E., Garland, W.J. and Poehlman, W.F.S. (2008) Simulating Control Rod and Fuel Assembly Motion Using Moving Meshes. Annals of Nuclear Energy, 35, 291-303.

[13]   Roman, J.E., Kammerer, M., Merz, F. and Jenko, F. (2010) Fast Eigenvalue Calculations in a Massively Parallel Plasma Turbulence Code. Parallel Computing, 36, 339-358.

[14]   Stewart, G.W. (2001) A Krylov-Schur Algorithm for Large Eigenproblems. SIAM Journal on Matrix Analysis and Applications, 23, 601-614.

[15]   Lehouc, R.B., Sorensen, D.C. and Yang, C. (1998) ARPACK Users’ Guide, Solution of Large-Scale Eigenvalue Problems by Implicitly Restarted Arnoldi Methods. Society for Industrial and Applied Mathematics, Philadelphia.

[16]   Balay, S., Buschelman, K., Eijkhout, V., Gropp, W., Kaushik, D., Knepley, M., McInnes, L.C., Smith, B. and Zhang, H. (2008) PETSc Users Manual. Tech. Rep. ANL-95/11—Revision 3.0.0, Argonne National Laboratory.

[17]   Ramos, E., Daz, W. and Cerverón, V. (1998) Paralelización bajo PVM del cálculo de la energa de correlación electrónica mediante revestimiento de matrices, IX Jornadas de Paralelismo. Universidad del País Vasco, San Sebastián.

[18]   Hernandez, V., Roman, J.E. and Tomas, A. (2007) Parallel Arnoldi Eigensolvers with Enhanced Scalability via Global Communications Rearrangement. Parallel Computing, 33, 521-540.

[19]   Karypis, G. and Kumar, V. (1999) Parallel Multilevel k-Way Partitioning Scheme for Irregular Graphs. SIAM Review, 41, 278-300.