On Convexity and Approximating the Perimeter of an Ellipse

Show more

References

[1] Almkvist, G. and Berndt, B. (1988) Gauss, Landen, Ramanujan, the Arithmetic Geometric Mean, Ellipses, π, and the Ladies Diary. The American Mathematical Monthly, 95, 585-608.

http://dx.doi.org/10.2307/2323302

[2] Chandrupatla, T.R. and Osler, T.J. (2010) The Perimeter of an Ellipse. The Mathematical Scientist, 35, 122-131.

[3] Barnard, R.W., Pearce, K. and Schovanec, L. (2001) Inequalities for the Perimeter of an Ellipse. Journal of Mathematical Analysis and Applications, 260, 295-306.

http://dx.doi.org/10.1006/jmaa.2000.7128

[4] Neumann, M. (1977) On the Strassen Disintegration Theorem. Archiv der Mathematik, 29, 413-420.

http://dx.doi.org/10.1007/BF01220429

[5] Udriste, C., Tevy, I. and Arsinte, V. (2010) Minimal Surfaces between Two Points. Journal of Advanced Mathematical Studies, 3, 105-116.

[6] Phelps, R.R. (1966) Lectures on Choquet’s Theorem. D. Van Nostrand Company, Inc., Princeton.

[7] Boboc, N. and Bucur, Gh. (1976) Convex Cones of Continuous Functions on Compact Spaces. Academiei, Bucharest (in Romanian).

[8] Deville, R., Fonf, D. and Hájek, P. (1998) Analytic and Polyhedral Approximation of Convex Bodies in Separable Polyhedral Banach Spaces. Israel Journal of Mathematics, 105, 139-154.

http://dx.doi.org/10.1007/BF02780326

[9] Niculescu, C. and Popa, N. (1981) Elements of Theory of Banach Spaces. Academiei, Bucharest (in Romanian).

[10] Olteanu, O. (1994) Uniform Approximation of Certain Continuous Functions. Studii si Cercetari Matematice (Mathematical Reports), 46, 533-541.

[11] Rudin, W. (1987) Real and Complex Analysis. 3rd Edition, McGraw-Hill, Inc., New York.