Back
 OJEpi  Vol.6 No.1 , February 2016
Dynamic Modelling of Dengue Epidemics in Function of Available Enthalpy and Rainfall
Abstract: In this work, we present results of an investigation of environmental precursors of infectious epidemic of dengue fever in the Metropolitan Area of Rio de Janeiro, RJ, Brazil, obtained by a numerical model with representation of infection and reinfection of the population. The period considered extend between 2000 and 2011, in which it was possible to pair meteorological data and the reporting of dengue patients worsening. These data should also be considered in the numerical model, by assimilation, to obtain simulations of Dengue epidemics. The model contains compartments for the human population, for the vector Aedes aegypti and four virus serotypes. The results provide consistent evidence that worsening infection and disease outbreaks are due to the occurrence of environmental precursors, as the dynamics of the accumulation of water in the breeding and energy availability in the form of metabolic activation enthalpy during pre-epidemic periods.
Cite this paper: Karam, H. , Silva, J. , Filho, A. and Rojas, J. (2016) Dynamic Modelling of Dengue Epidemics in Function of Available Enthalpy and Rainfall. Open Journal of Epidemiology, 6, 50-79. doi: 10.4236/ojepi.2016.61007.
References

[1]   Kyle, J. and Harris, E. (2008) Global Spread and Persistence of Dengue. Annual Review of Microbiology, 62, 71-92.
http://dx.doi.org/10.1146/annurev.micro.62.081307.163005

[2]   Normile, D. (2013) Surprising New Dengue Virus Throws a Spanner in Disease Control Efforts. Science, 342, 415.
http://dx.doi.org/10.1126/science.342.6157.415

[3]   Nogueira, R.M., de Araujo, J. and Schatzmayr, H. (2007) Dengue Viruses in Brazil, 1986-2006. Revista Panamericana de Salud Pública, 22, 358-363.
http://dx.doi.org/10.1590/S1020-49892007001000009

[4]   Estadao (2012) Casos de Dengue 4 aumentam risco de epidemia no RJ.
http://www.estadao.com.br

[5]   Terra (2013) Governo admite epidemia de dengue após aumento de 190% no número de casos.
http://noticias.terra.com.br

[6]   Frayssinet, F. (2012) Brazil Deploys Junior Firefighters to Snuff out Dengue.
http://www.ipsnews.net/2012/02/

[7]   Braga, I.A. and Valle, D. (2007) Aedes aegypti: Histórico do controle no Brasil. Technical Report 2, Epidemiologia e Servicos de Saúde, Programa Nacional de Controle da Dengue—SVS/MS, Brasília, DF.

[8]   Vynnycky, E. and White, R. (2010) An Introduction to Infectious Disease Modelling. Oxford University Press, Oxford, 400 p.

[9]   Brazil (2005) Guia de Vigilancia Epidemiológica. 6 Edition, Departamento de Vigilancia Epidemiológica, Secretaria de Vigilancia em Saúde-Ministério da Saúde (SVS-MS), Brasília, DF.

[10]   Ferreira, C.P. and Yang, H.M. (2003) Estudo da Transmissao da Dengue entre os Indivíduos em Interacao com a Populacao de Mosquitos Aedes aegypti. TEMA—Tendências em Matemática Aplicada e Computacional, 4, 323-332.
http://dx.doi.org/10.5540/tema.2003.04.03.0323

[11]   Brazil (2012) Séries Estatísticas e Séries Históricas do Instituto Brasileiro de Geografia e Estatística, IBGE.
http://seriesestatisticas.ibge.gov.br/series.asp

[12]   Christophers, S.R. (1960) Aedes aegypti (L.), the Yellow Fever Mosquito: Its Life History, Bionomics and Structure. Cambridge University Press, London, 739 p.

[13]   Aguiar, R. (2006) Notícias do IOC.
http://www.ioc.fiocruz.br

[14]   FioCruz (2015). Fundacao Oswaldo Cruz.
http://portal.fiocruz.br/

[15]   Brigdman, H.A. and Oliver, J.E. (2006) The Global Climate System Patterns, Processes, and Teleconnections. Cambridge University Press, Cambridge, 205-243.

[16]   Campos, H.R.P. (2009) Estudo da relacao entre variáveis meteorológicas e incidência de dengue utilizando métodos estatísticos e redes neurais artificiais. Master’s Thesis, Universidade Federal de Vicosa, MG, Brazil.

[17]   Rocha, J., Mariano, Z., Aguiar, R. and Lima, A. (2012) Estudo da relacao entre precipitacao e casos de dengue na cidade de jataí, goias. Revista Geonorte, 2, 773-783.

[18]   Oke, T.R. (1988) Boundary Layer Climates. 2nd Edition, Routledge, London, 464 p.

[19]   Brutsaert, W.H. (2005) Hydrology—An Introduction. Cambridge University Press, Cambridge, 618 p.
http://dx.doi.org/10.1017/CBO9780511808470

[20]   Bird, R.E. and Hulstrom, R.L. (1981) A Simplified Clear Sky Model for Direct and Diffuse Insolation on Horizontal Surfaces. Tr-642-761, Solar Energy Research Institute (SERI)—US Department of Energy, Golden, CO.
http://dx.doi.org/10.2172/6510849

[21]   Iqbal, M. (1983) An Introduction to Solar Radiation. Academic Press, Toronto.

[22]   Stull, R.B. (1988) An Introduction to Boundary Layer Meteorology. Springer, Dordrecht, 670 p.
http://dx.doi.org/10.1007/978-94-009-3027-8

[23]   Otero, M., Solari, H.G. and Schweigmann, N. (2006) A Stochastic Population Dynamics Model for Aedes Aegypti: Formulation and Application to a City with Temperate Climate. Bulletin of Mathematical Biology, 68, 1945-1974.
http://dx.doi.org/10.1007/s11538-006-9067-y

[24]   Lima-Camara, T.N., Bruno, R.V., Luz, P.M., Castro, M.G., Lourenco-de Oliveira, R., et al. (2011) Dengue Infection Increases the Locomotor Activity of Aedes aegypti Females. PLoS ONE, 6, 15.
http://dx.doi.org/10.1371/journal.pone.0017690

[25]   Atlan, H. (1992) Entre o cristal e a fumaca: Ensaio sobre a organizacao do ser vivo. Jorge Zahar Ed., Rio de Janeiro, 268 p.

[26]   Murphy, M.P. and O’Neill, L.A.J. (1997) O que é vida 50 anos depois. Especulacoes sobre o futuro da Biologia. Fundacao Editora da UNESP, Sao Paulo.

[27]   Brunini, O., Lisbao, R.S., Bernardi, J.B., Fornasier, J.B. and Pedro Júnior, M.J. (1976) Temperatura-base para alface cultivar “White Boston”, em um sistema de unidades térmicas. Bragantia, 35, 213-219.
http://dx.doi.org/10.1590/S0006-87051976000100019

[28]   Descloux, E., Mangeas, M., Menkes, C.E., Lengaigne, M., Leroy, A., et al. (2012) Climate-Based Models for Understanding and Forecasting Dengue Epidemics. PLoS Neglected Tropical Diseases, 6, e1470.
http://dx.doi.org/10.1371/journal.pntd.0001470

[29]   Kister, R.E. (1974) A Study of Data Assimilation Techniques in an Autobarotropic Primitive Equation Channel Model. Master’s Thesis, Department of Meteorology—The Pennsylvania State University, University Park.

[30]   Haltiner, G.J. and Williams, R.T. (1980) Numerical Prediction and Dynamic Meteorology. 2nd Edition, Wiley, New York, 496 p.

[31]   Brazil (2006) Indicadores Demográficos do Brasil. Ministério da Saúde Mato Grosso do Sul—MS, Brazil.
http://tabnet.datasus.gov.br/cgi/idb2006/a03.htm

[32]   Flores, R.J.L., Karam, H.A., Marques Filho, E.P. and Pereira Filho, A.J. (2015) Estimation of Atmospheric Turbidity and Surface Radiative Parameters Using Broadband Clear Sky Solar Irradiance Models in Rio de Janeiro, Brazil. Theoretical and Applied Climatology, 1, 1-12.

[33]   Bolton, D. (1980) The Computation of Equivalent Potential Temperature. Monthly Weather Review, 108, 1046-1053.
http://dx.doi.org/10.1175/1520-0493(1980)108<1046:TCOEPT>2.0.CO;2

[34]   Focks, D.A., Haile, D.C., Daniels, E. and Moun, G.A. (1993) Dynamics Life Table Model for Aedes aegypti: Analysis of the Literature and Model Development. Journal of Medical Entomology, 30, 1003-1018.
http://dx.doi.org/10.1093/jmedent/30.6.1003

[35]   Focks, D.A., Haile, D.G., Daniels, E. and Moun, G.A. (1993) Dynamics Life Table Model for Aedes aegypti: Simulations Results. Journal of Medical Entomology, 30, 1019-1029.

[36]   Focks, D.A., Daniels, E., Haile, D.G. and Kessling, J.E. (1995) A Simulation Model of the Epidemiology of Urban Dengue Fever: Literature Analysis, Model Development, Preliminary Validation, and Samples of Simulation Results. The American Journal of Tropical Medicine and Hygiene, 53, 489-506.

[37]   Focks, D.A. and Barrera, R. (2007) Dengue Transmission Dynamics: Assessment and Implications for Control. Technical Report, Scientific Working Group, Report on Dengue, World Health Organization on Behalf of the Special Programme for Research and Training in Tropical Diseases, 1-5 October 2006, Geneva.

[38]   Morin, C.W. and Comrie, A.C. (2010) Modeled Response of the West Nile Virus Vector Culex quinquefasciatus to Changing Climate Using the Dynamic Mosquito Simulation Model. International Journal of Biometerology, 54, 517-529. http://dx.doi.org/10.1007/s00484-010-0349-6

[39]   Luz, P.M., Codeco, C.T., Massad, E. and Struchiner, C.J. (2003) Uncertainties regarding Dengue Modeling in Rio de Janeiro, Brazil. Memórias do Instituto Oswaldo Cruz, 98, 871-878.
http://dx.doi.org/10.1590/S0074-02762003000700002

[40]   Sporleder, M., Chavez, D., Gonzales, J.C., Juarez, H., Simin, R., et al. (2009) ILCYM—Insect Life Cycle Modeling: Software for Developing Temperature-Based Insect Phenology Models with Applications for Regional and Global Pest Risk Assessments and Mapping. Proceedings of the 15th Triennial Symposium of the International Society for Tropical Root Crops (ISTRC), Lima, 2-6 November 2009.

[41]   Lana, R.M., Carneiro, T.G.S., Honório, N.A. and Codeco, C.T. (2014) Seasonal and Nonseasonal Dynamics of Aedes aegypti in Rio de Janeiro, Brazil: Fitting Mathematical Models to Trap Data. Acta Tropica, 129, 25-32.
http://dx.doi.org/10.1016/j.actatropica.2013.07.025

[42]   Verhulst, P.F. (1845) Recherches mathématiques sur la loi d’accroissement de la population. Nouveaux mémoires de l’Académie Royale des Sciences et Belles-lettres de Bruxelles, 18, 1-41.

[43]   Watts, D.M., Burke, D.S., Harrison, B.A., Whitmire, R.E. and Nisalak, A. (1987) Effect of Temperature on the Vector Efficiency of Aedes aegypti for Dengue 2 Virus. American Journal of Tropical Medicine and Hygiene, 36, 143-152.

[44]   Mesinger, F. and Arakawa, A. (1976) Numerical Methods Used in Atmospheric Models, Volume 1. International Council of Scientific Unions—World Meteorological Organization, Geneva.

[45]   Yang, H.M., Macoris, M.L.G., Galvani, K.C., Andriguetti, M.T.M. and Wanderley, D.M.V. (2009) Assessing the Effects of Temperature on the Population of Aedes aegypti, the Vector of Dengue. Epidemiology and Infection, 137, 1188-1202.
http://dx.doi.org/10.1017/S0950268809002040

[46]   Marques Filho, E.P., Sa, L.D.A., Karam, H.A., Miranda, A.G. and Franca, J.R.A. (2009) Rio de Janeiro’s Tropical Urban Climate. Urban Climate News—Quarterly Newsletter of the International Association for Urban Climate (IAUC), 32, 5-9.

[47]   Karam, H.A., Pereira Filho, A.J., Masson, V., Noilhan, J. and Marques Filho, E.P. (2010) Formulation of a Tropical Town Energy Budget (t-TEB) Scheme. Theoretical and Applied Climatology, 101, 109-120.
http://dx.doi.org/10.1007/s00704-009-0206-x

[48]   Morin, C.W. (2012) Climate and Environmental Influences on the Ecology of Vectors and Vector-Borne Diseases. PhD Thesis, Doctoral Dissertation, School of Geography and Development—Graduate College, The University of Arizona, Tucson.

[49]   Morin, C.W., Comrie, A.C. and Ernst, K. (2013) Climate and Dengue Transmission: Evidence and Implications. Environmental Health Perspectives, 121, 11-12.
http://dx.doi.org/10.1289/ehp.1306556

[50]   Sharpe, P.J.H. and De Michele, D.W. (1977) Reaction Kinetics of Poikilotherm Development. Journal of Theoretical Biology, 64, 649-670.
http://dx.doi.org/10.1016/0022-5193(77)90265-X

[51]   Schoolfield, R.M., Sharpe, P.J.H. and Magnuson, C.E. (1981) Non-Linear Regression of Biological Temperature Dependent Rate Models Based on Absolute Reaction-Rate Theory. Journal of Theoretical Biology, 88, 719-731.
http://dx.doi.org/10.1016/0022-5193(81)90246-0

[52]   Van der Have, T.M. and Jong, G.D. (1996) Adult Size in Ectotherms: Temperature Effects on Growth and Differentiation. Journal of Theoretical Biology, 183, 329-340.
http://dx.doi.org/10.1006/jtbi.1996.0224

[53]   Salom, S.M., Stephen, F.M. and Thompson, L.C. (1987) Development Rates and a Temperature-Dependent Model of Pales Weevil, Hylobius pales (Herbst), Development. Environmental Entomology, 16, 956-962.
http://dx.doi.org/10.1093/ee/16.4.956

[54]   Coelho, F.C., Codeco, C.T. and Struchiner, C.J. (2008) Complete Treatment of Uncertainties in a Model for Dengue R0 Estimation. Cadernos de Saúde Pública, 24, 853-861.
http://dx.doi.org/10.1590/S0102-311X2008000400016

[55]   Coelho, F.C., Codeco, C.T. and Gomes, M.G.M. (2011) A Bayesian Framework for Parameter Estimation in Dynamical Models. PLoS ONE, 6, e19616.
http://dx.doi.org/10.1371/journal.pone.0019616

[56]   Rall, B.C., Brose, U., Hartvig, M., Kalinkat, G., Schwarzmüller, F., et al. (2012) Universal Temperature and Body- Mass Scaling of Feeding Rates. Philosophical Transactions of the Royal Society B, 367, 2923-2934.
http://dx.doi.org/10.1098/rstb.2012.0242

[57]   Rueda, L.M., Patel, K.L., Axtell, R.C. and Stinner, R.E. (1990) Temperature-Dependent Development and Survival Rates of Culex quinquefasciatus and Aedes aegypti (Diptera: Culicidae). Journal of Medical Entomology, 27, 892-898.
http://dx.doi.org/10.1093/jmedent/27.5.892

[58]   Massad, E., Coutinho, F.A., Burattini, M.N. and Lopez, L.F. (2001) The Risk of Yellow Fever in a Dengue Infested Area. Transactions of the Royal Society of Tropical Medicine and Hygiene, 95, 370-374.
http://dx.doi.org/10.1016/S0035-9203(01)90184-1

[59]   Khan, A., Hassan, M. and Imran, M. (2014) Estimating the Basic Reproduction Number for Single-Strain Dengue Fever Epidemics. Infectious Diseases of Poverty, 3, 12.
http://dx.doi.org/10.1186/2049-9957-3-12

[60]   Luz, P.M., Mendes, B.V.M., Codeco, C.T., Struchiner, C.J. and Galvani, A.P. (2008) Time Series Analysis of Dengue Incidence in Rio de Janeiro, Brazil. The American Journal of Tropical Medicine and Hygiene, 79, 933-939.

[61]   Ferreira, M.J., Oliveira, A.P. and Soares, J. (2013) Diurnal Variation in Stored Energy Flux in Sao Paulo City, Brazil. Urban Climate, 5, 36-51.
http://dx.doi.org/10.1016/j.uclim.2013.06.001

[62]   Piovezan, R. (2009) Levantamento de Larvas de Culicidae (Diptera) em diferentes criadouros no Município de Santa Bárbara d’Oeste, SP. Master’s Thesis, Zoology, UNESP, Rio Claro, SP, Brazil.

[63]   Grimmond, C.S.B. and Oke, T.R. (2002) Turbulent Heat Fluxes in Urban Areas: Observations and a Local-Scale Urban Meteorological Parameterization Scheme (LUMPS). Journal of Applied Meteorology, 41, 792-810.
http://dx.doi.org/10.1175/1520-0450(2002)041<0792:THFIUA>2.0.CO;2

[64]   Penman, H.L. (1948) Natural Evaporation from Open Water, Bare Soil and Grass. Royal Society of London, 193, 120- 145.
http://dx.doi.org/10.1098/rspa.1948.0037

[65]   Thom, A.S. and Oliver, H.R. (1977) On Penman’s Equation for Estimating regional Evaporation. Quarterly Journal of the Royal Meteorological Society, 103, 345-357.
http://dx.doi.org/10.1002/qj.49710343610

[66]   Montheith, J. and Unsworth, M. (2007) Principles of Environmental Physics. 3rd Edition, Academic Press, New York, 440 p.

[67]   Karam, H.A. and Pereira Filho, A.J. (2006) Revisao dos métodos de Penman e Penman-Monteith e suaaplicacao a canions urbanos. Revista Brasileira de Meteorologia, 21, 86-106.

[68]   Lemonsu, A., Masson, V. and Berthier, E. (2007) Improvement of the Hydrological Component of an Urban SVAT Model. Hydrological Processes, 21, 2100-2111.
http://dx.doi.org/10.1002/hyp.6373

[69]   Masson, V., Marchadier, C., Adolphe, L., Aguejdad, R., Avner, P., et al. (2014) Adapting Cities to Climate Change: A Systemic Modelling Approach. Urban Climate, 10, 407-429.
http://dx.doi.org/10.1016/j.uclim.2014.03.004

[70]   Nash, J.E. (1959) Systematic Determination of Unit Hydrograph Parameters. Journal of Geophysical Research, 64, 111-115.
http://dx.doi.org/10.1029/JZ064i001p00111

[71]   Beven, K.J. (2001) Rainfall-Runoff Modelling: The Primer. 2nd Edition, Wiley, Chichester.

[72]   Nash, J.E. and Sutcliffe, J.V. (1970) River Flow Forecasting through Conceptual Models. Part I: A Discussion of Principles. Journal of Hydrology, 10, 282-290.
http://dx.doi.org/10.1016/0022-1694(70)90255-6

[73]   Singh, J., Knapp, H.V., Arnold, J.G. and Demissie, M. (2005) Hydrologic Modeling of the Iroquois River Watershed Using HSPF and SWAT. Journal of the American Water Resources Association, 41, 343-360.
http://dx.doi.org/10.1111/j.1752-1688.2005.tb03740.x

[74]   Moriasi, D.N., Arnold, J.G., Liew, M.W.V., Bingner, R.L., Harmel, R.D., et al. (2007) Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Transactions of the ASABE, 50, 885-900.
http://dx.doi.org/10.13031/2013.23153

[75]   Wilks, D.S. (2006) Statistical Methods in the Atmospheric Sciences. 2nd Edition, Academic Press, Elsevier, Boston, 627 p.

[76]   Baldwin, M.E. and Kain, J.S. (2006) Sensitivity of Several Performance Measures to Displacement Error, Bias, and Event Frequency. Weather and Forecasting, 21, 236-248.
http://dx.doi.org/10.1175/WAF933.1

[77]   Yue, S., Pilon, P., Phinney, B. and Cavadias, G. (2002) The Influence of Autocorrelation on the Ability to Detect Trend in Hydrological Series. Hydrological Processes, 16, 1807-1829.
http://dx.doi.org/10.1002/hyp.1095

 
 
Top