Back
 JBiSE  Vol.9 No.1 , January 2016
Homology Model and Ligand Binding Interactions of the Extracellular Domain of the Human α4β2 Nicotinic Acetylcholine Receptor
Abstract: Addiction to nicotine, and possibly other tobacco constituents, is a major factor that contributes to the difficulties smokers face when attempting to quit smoking. Amongst the various subtypes of nicotinic acetylcholine receptors (nAChRs), the α4β2 subtype plays an important role in mediating the addiction process. The characterization of human α4β2-ligand binding interactions provides a molecular framework for understanding ligand-receptor interactions, rendering insights into mechanisms of nicotine addiction and may furnish a tool for efficiently identifying ligands that can bind the nicotine receptor. Therefore, we constructed a homology model of human α4β2 nAChR and performed molecular docking and molecular dynamics (MD) simulations to elucidate the potential human α4β2-ligand binding modes for eleven compounds known to bind to this receptor. Residues V96, L97 and F151 of the α4 subunit and L111, F119 and F121 of the β2 subunit were found to be involved in hydrophobic interactions while residues S153 and W154 of the α4 subunit were involved in the formation of hydrogen bonds between the receptor and respective ligands. The homology model and its eleven ligand-bound structures will be used to develop a virtual screening program for identifying tobacco constituents that are potentially addictive.
Cite this paper: Mao, S. , Ng, H. , Orr, M. , Luo, H. , Ye, H. , Ge, W. , Tong, W. and Hong, H. (2016) Homology Model and Ligand Binding Interactions of the Extracellular Domain of the Human α4β2 Nicotinic Acetylcholine Receptor. Journal of Biomedical Science and Engineering, 9, 41-100. doi: 10.4236/jbise.2016.91005.
References

[1]   Dube, S., Asman, K., Malarcher, A. and Carabollo, R. (2009) Cigarette Smoking among Adults and Trends in Smoking Cessation-United States, 2008. Morbidity and Mortality Weekly Report, 58, 1227-1232.

[2]   Benowitz, N.L. (2009) Pharmacology of Nicotine: Addiction, Smoking-Induced Disease, and Therapeutics. Annual Review of Pharmacology and Toxicology, 49, 57-71.
http://dx.doi.org/10.1146/annurev.pharmtox.48.113006.094742

[3]   Benowitz, N.L. (2010) Nicotine Addiction. New England Journal of Medicine, 362, 2295-2303.
http://dx.doi.org/10.1056/NEJMra0809890

[4]   Jensen, A.A., Frolund, B., Liljefors, T. and Krogsgaard-Larsen, P. (2005) Neuronal Nicotinic Acetylcholine Receptors: Structural Revelations, Target Identifications, and Therapeutic Inspirations. Journal of Medicinal Chemistry, 48, 4705- 4745.
http://dx.doi.org/10.1021/jm040219e

[5]   Dani, J.A. and Bertrand, D. (2007) Nicotinic Acetylcholine Receptors and Nicotinic Cholinergic Mechanisms of the Central Nervous System. Annual Review of Pharmacology and Toxicology, 47, 699-729.
http://dx.doi.org/10.1146/annurev.pharmtox.47.120505.105214

[6]   Liu, X. (2014) Effects of Blockade of Alpha 4 Beta 2 and Alpha 7 Nicotinic Acetylcholine Receptors on Cue-Induced Reinstatement of Nicotine-Seeking Behaviour in Rats. International Journal of Neuropsychopharmacology, 17, 105- 116.
http://dx.doi.org/10.1017/S1461145713000874

[7]   Albuquerque, E.X., Pereira, E.F., Alkondon, M. and Rogers, S.W. (2009) Mammalian Nicotinic Acetylcholine Receptors: From Structure to Function. Physiological Reviews, 89, 73-120.
http://dx.doi.org/10.1152/physrev.00015.2008

[8]   Millar, N.S. and Gotti, C. (2009) Diversity of Vertebrate Nicotinic Acetylcholine Receptors. Neuropharmacology, 56, 237-246.
http://dx.doi.org/10.1016/j.neuropharm.2008.07.041

[9]   Miwa, J.M., Lester, H.A. and Walz, A. (2012) Optimizing Cholinergic Tone through Lynx Modulators of Nicotinic Receptors: Implications for Plasticity and Nicotine Addiction. Physiology, 27, 187-199.
http://dx.doi.org/10.1152/physiol.00002.2012

[10]   Tapper, A.R., McKinney, S.L., Nashmi, R., Schwarz, J., Deshpande, P., Labarca, C., Whiteaker, P., Marks, M.J., Collins, A.C. and Lester, H.A. (2004) Nicotine Activation of Alpha4* Receptors: Sufficient for Reward, Tolerance, and Sensitization. Science, 306, 1029-1032.
http://dx.doi.org/10.1126/science.1099420

[11]   Zhang, H.K., Eaton, J.B., Yu, L.F., Nys, M., Mazzolari, A., van Elk, R., Smit, A. B., Alexandrov, V., Hanania, T., Sabath, E., Fedolak, A., Brunner, D., Lukas, R.J., Vistoli, G., Ulens, C. and Kozikowski, A.P. (2012) Insights into the Structural Determinants Required for High-Affinity Binding of Chiral Cyclopropane-Containing Ligands to Alpha 4 Beta 2-Nicotinic Acetylcholine Receptors: An Integrated Approach to Behaviorally Active Nicotinic Ligands. Journal of Medicinal Chemistry, 55, 8028-8037.
http://dx.doi.org/10.1021/jm3008739

[12]   Vernall, A.J., Stoddart, L.A., Briddon, S.J., Ng, H.W., Laughton, C.A., Doughty, S.W., Hill, S.J. and Kellam, B. (2013) Conversion of a Non-Selective Adenosine Receptor Antagonist into a 3-Selective High Affinity Fluorescent Probes Using Peptide-Based Linkers. Organic & Biomolecular Chemistry, 11, 5673-5682.
http://dx.doi.org/10.1039/c3ob41221k

[13]   Smit, A.B., Syed, N.I., Schaap, D., van Minnen, J., Klumperman, J., Kits, K.S., Lodder, H., van der Schors, R.C., van Elk, R., Sorgedrager, B., Brejc, K., Sixma, T.K. and Geraerts, W.P. (2001) A Glia-Derived Acetylcholine-Binding Protein That Modulates Synaptic Transmission. Nature, 411, 261-268.
http://dx.doi.org/10.1038/35077000

[14]   Hansen, S.B., Talley, T.T., Radic, Z. and Taylor, P. (2004) Structural and Ligand Recognition Characteristics of an Acetylcholine-Binding Protein from Aplysia californica. Journal of Biological Chemistry, 279, 24197-24202.
http://dx.doi.org/10.1074/jbc.M402452200

[15]   McCormack, T., Petrovich, R.M., Mercier, K.A., DeRose, E.F., Cuneo, M.J., Williams, J., Johnson, K.L., Lamb, P.W., London, R.E. and Yakel, J.L. (2010) Identification and Functional Characterization of a Novel Acetylcholine-Binding Protein from the Marine Annelid Capitella teleta. Biochemistry, 49, 2279-2287.
http://dx.doi.org/10.1021/bi902023y

[16]   Rucktooa, P., Smit, A.B. and Sixma, T.K. (2009) Insight in Nachr Subtype Selectivity from Achbp Crystal Structures. Biochemical Pharmacology, 78, 777-787.
http://dx.doi.org/10.1016/j.bcp.2009.06.098

[17]   Haddadian, E.J., Cheng, M.H., Coalson, R.D., Xu, Y. and Tang, P. (2008) In Silico Models for the Human Alpha4beta2 Nicotinic Acetylcholine Receptor. Journal of Physical Chemistry B, 112, 13981-13990.
http://dx.doi.org/10.1021/jp804868s

[18]   Bisson, W.H., Westera, G., Schubiger, P.A. and Scapozza, L. (2008) Homology Modeling and Dynamics of the Extracellular Domain of Rat and Human Neuronal Nicotinic Acetylcholine Receptor Subtypes Alpha4beta2 and Alpha7. Journal of Molecular Modeling, 14, 891-899.
http://dx.doi.org/10.1007/s00894-008-0340-x

[19]   Billen, B., Spurny, R., Brams, M., Van Elk, R., Valera-Kummer, S., Yakel, J.L., Voets, T., Bertrand, D., Smit, A.B. and Ulens, C. (2012) Molecular Actions of Smoking Cessation Drugs at Α4β2 Nicotinic Receptors Defined in Crystal Structures of a Homologous Binding Protein. Proceedings of the National Academy of Sciences, 109, 9173-9178.
http://dx.doi.org/10.1073/pnas.1116397109

[20]   Ng, H.W., Laughton, C.A. and Doughty, S.W. (2013) Molecular Dynamics Simulations of the Adenosine A2a Receptor: Structural Stability, Sampling, and Convergence. Journal of Chemical Information and Modeling, 53, 1168-1178.
http://dx.doi.org/10.1021/ci300610w

[21]   Ng, H.W., Laughton, C.A. and Doughty, S.W. (2014) Molecular Dynamics Simulations of the Adenosine A2a Receptor in Popc and Pope Lipid Bilayers: Effects of Membrane on Protein Behavior. Journal of Chemical Information and Modeling, 54, 573-581.
http://dx.doi.org/10.1021/ci400463z

[22]   Marti-Renom, M.A., Stuart, A.C., Fiser, A., Sanchez, R., Melo, F. and Sali, A. (2000) Comparative Protein Structure Modeling of Genes and Genomes. Annual Review of Biophysics and Biomolecular Structure, 29, 291-325.
http://dx.doi.org/10.1146/annurev.biophys.29.1.291

[23]   Hong, H., Hong, Q., Perkins, R., Shi, L., Fang, H., Su, Z., Dragan, Y., Fuscoe, J.C. and Tong, W. (2009) The Accurate Prediction of Protein Family from Amino Acid Sequence by Measuring Features of Sequence Fragments. Journal of Computational Biology, 16, 1671-1688.
http://dx.doi.org/10.1089/cmb.2008.0115

[24]   Shen, J., Zhang, W., Fang, H., Perkins, R., Tong, W. and Hong, H. (2013) Homology Modeling, Molecular Docking, and Molecular Dynamics Simulations Elucidated Alpha-Fetoprotein Binding Modes. BMC Bioinformatics, 14, S6.
http://dx.doi.org/10.1186/1471-2105-14-S14-S6

[25]   Maestro, S. (2011) Version 9.2. LLC, New York.

[26]   Uniprot Consortium (2013) Update on Activities at the Universal Protein Resource (Uniprot) in 2013. Nucleic Acids Research, 41, D43-D47.
http://dx.doi.org/10.1093/nar/gks1068

[27]   Hong, H., Neamati, N., Wang, S., Nicklaus, M.C., Mazumder, A., Zhao, H., Burke, T.R., Pommier, Y. and Milne, G.W.A. (1997) Discovery of Hiv-1 Integrase Inhibitors by Pharmacophore Searching. Journal of Medicinal Chemistry, 40, 930-936.
http://dx.doi.org/10.1021/jm960754h

[28]   Neamati, N., Hong, H., Owen, J.M., Sunder, S., Winslow, H.E., Christensen, J.L., Zhao, H., Burke, T.R., Jr., Milne, G.W. and Pommier, Y. (1998) Salicylhydrazine-Containing Inhibitors of Hiv-1 Integrase: Implication for a Selective Chelation in the Integrase Active Site. Journal of Medicinal Chemistry, 41, 3202-3209.
http://dx.doi.org/10.1021/jm9801760

[29]   Hong, H., Neamati, N., Winslow, H.E., Christensen, J.L., Orr, A., Pommier, Y. and Milne, G.W. (1998) Identification of Hiv-1 Integrase Inhibitors Based on a Four-Point Pharmacophore. Antiviral Chemistry & Chemotherapy, 9, 461-472.
http://dx.doi.org/10.1177/095632029800900602

[30]   Hong, H., Fang, H., Xie, Q., Perkins, R., Sheehan, D.M. and Tong, W. (2003) Comparative Molecular Field Analysis (Comfa) Model Using a Large Diverse Set of Natural, Synthetic and Environmental Chemicals for Binding to the Androgen Receptor. SAR and QSAR in Environmental Research, 14, 373-388.
http://dx.doi.org/10.1080/10629360310001623962

[31]   Shi, L., Tong, W., Fang, H., Xie, Q., Hong, H., Perkins, R., Wu, J., Tu, M., Blair, R.M., Branham, W.S., Waller, C., Walker, J. and Sheehan, D.M. (2002) An Integrated “4-Phase” Approach for Setting Endocrine Disruption Screening Priorities—Phase I and Ii Predictions of Estrogen Receptor Binding Affinity. SAR and QSAR in Environmental Research, 13, 69-88.
http://dx.doi.org/10.1080/10629360290002235

[32]   Liu, J., Mansouri, K., Judson, R., Martin, M.T., Hong, H., Chen, M., Xu, X., Thomas, R. and Shah, I. (2015) Predicting Hepatotoxicity Using ToxCast in Vitro Bioactivity and Chemical Structure. Chemical Research in Toxicology, 28, 738-751.
http://dx.doi.org/10.1021/tx500501h

[33]   Hong, H., Tong, W., Fang, H., Shi, L., Xie, Q., Wu, J., Perkins, R., Walker, J.D., Branham, W. and Sheehan, D.M. (2002) Prediction of Estrogen Receptor Binding for 58,000 Chemicals Using an Integrated System of a Tree-Based Model with Structural Alerts. Environmental Health Perspectives, 110, 29-36.
http://dx.doi.org/10.1289/ehp.0211029

[34]   Hong, H., Tong, W., Perkins, R., Fang, H., Xie, Q. and Shi, L. (2004) Multiclass Decision Forest-a Novel Pattern Recognition Method for Multiclass Classification in Microarray Data Analysis. DNA and Cell Biology, 23, 685-694.
http://dx.doi.org/10.1089/dna.2004.23.685

[35]   Hong, H., Tong, W., Xie, Q., Fang, H. and Perkins, R. (2005) An in Silico Ensemble Method for Lead Discovery: Decision Forest. SAR and QSAR in Environmental Research, 16, 339-347.
http://dx.doi.org/10.1080/10659360500203022

[36]   Tong, W., Hong, H., Fang, H., Xie, Q. and Perkins, R. (2003) Decision Forest: Combining the Predictions of Multiple Independent Decision Tree Models. Journal of Chemical Information and Computer Science, 43, 525-531.
http://dx.doi.org/10.1021/ci020058s

[37]   Tong, W., Xie, Q., Hong, H., Shi, L., Fang, H., Perkins, R. and Petricoin, E.F. (2004) Using Decision Forest to Classify Prostate Cancer Samples on the Basis of Seldi-Tof Ms Data: Assessing Chance Correlation and Prediction Confidence. Environmental Health Perspectives, 112, 1622-1627.
http://dx.doi.org/10.1289/ehp.7109

[38]   Xie, Q., Ratnasinghe, L.D., Hong, H., Perkins, R., Tang, Z.Z., Hu, N., Taylor, P.R. and Tong, W. (2005) Decision Forest Analysis of 61 Single Nucleotide Polymorphisms in a Case-Control Study of Esophageal Cancer; a Novel Method. BMC Bioinformatics, 6, S4.
http://dx.doi.org/10.1186/1471-2105-6-S2-S4

[39]   Ng, H.W., Doughty, S.W., Luo, H., Ye, H., Ge, W., Tong, W. and Hong, H. (2015) Development and Validation of Decision Forest Model for Estrogen Receptor Binding Prediction of Chemicals Using Large Data Sets. Chemical Research in Toxicology, 28, 2343-2351.
http://dx.doi.org/10.1021/acs.chemrestox.5b00358

[40]   McPhail, B., Tie, Y., Hong, H., Pearce, B.A., Schnackenberg, L.K., Ge, W., Valerio, L.G., Fuscoe, J.C., Tong, W., Buzatu, D.A., et al. (2012) Modeling Chemical Interaction Profiles: I. Spectral Data-Activity Relationship and Structure-Activity Relationship Models for Inhibitors and Non-Inhibitors of Cytochrome P450 CYP3A4 and CYP2D6 Isozymes. Molecules, 17, 3283-3406.
http://dx.doi.org/10.3390/molecules17033383

[41]   Tong, W., Hong, H., Xie, Q., Shi, L., Fang, H. and Perkins, R. (2005) Assessing QSAR limitations—A Regulatory Perspective. Current Computer-Aided Drug Design, 1, 195-205.
http://dx.doi.org/10.2174/1573409053585663

[42]   Hong, H., Xie, Q., Ge, W., Qian, F., Fang, H., Shi, L., Su, Z., Perkins, R. and Tong, W. (2008) Mold(2), Molecular Descriptors from 2d Structures for Chemoinformatics and Toxicoinformatics. Journal of Chemical Information and Modeling, 48, 1337-1344.
http://dx.doi.org/10.1021/ci800038f

[43]   Hong, H. and Xin, X. (1990) ESSESA: An Expert System for Structure Elucidation from Spectra Analysis. 1. The Knowledge Base of Infrared Spectra and Analysis and Interpretation Program. Journal of Chemical Information and Modeling, 30, 203-210.
http://dx.doi.org/10.1021/ci00067a001

[44]   Hong, H. and Xin, X. (1992) ESSESA: An Expert System for Structure Elucidation from Spectra Analysis. 2. A Novel Algorithm of Perception of the Linear Independent Smallest Set of Smallest Rings. Analytica Chimica Acta, 262, 179- 191.
http://dx.doi.org/10.1016/0003-2670(92)80022-Y

[45]   Hong, H. and Xin, X. (1992) ESSESA: An Expert System for Structure Elucidation from Spectra Analysis. 3. LNSCS for Chemical Knowledge Representation. Journal of Chemical Information and Modeling, 32, 116-120.
http://dx.doi.org/10.1021/ci00005a019

[46]   Hong, H. and Xin, X. (1994) ESSESA: An Expert System for Structure Elucidation from Spectra Analysis. 4. Canonical Representation of Structures. Journal of Chemical Information and Modeling, 34, 730-734.
http://dx.doi.org/10.1021/ci00020a006

[47]   Hong, H. and Xin, X. (1994) ESSESA: An Expert System for Structure Elucidation from Spectra Analysis. 5. Substructure Constraints from Analysis of First-Order 1H-NMR Spectra. Journal of Chemical Information and Modeling, 34, 1259-1266.
http://dx.doi.org/10.1021/ci00022a006

[48]   Hong, H., Han, Y., Xin, X. and Shi, Y. (1995) ESSESA: An Expert System for Structure Elucidation from Spectra Analysis. 6. Substructure Constraints from Analysis of First-Order 13C-NMR Spectra. Journal of Chemical Information and Modeling, 35, 979-1000.
http://dx.doi.org/10.1021/ci00028a005

[49]   Masui, H. and Hong, H. (2006) Spec2D: A Structure Elucidation System Based on 1H NMR and H-H COSY Spectra in Organic Chemistry. Journal of Chemical Information and Modeling, 46, 775-787.
http://dx.doi.org/10.1021/ci0502810

[50]   Drake, R.R., Neamati, N., Hong, H., Pilon, A., Sunthankar, P., Hume, S.D., Wilne, G.W.A. and Pommier, Y. (1998) Identification of a Mononucleotide Binding Site in Human HIV-1 Integrase. Proceedings of the National Academy of Sciences USA, 98, 1495-1500.

[51]   Tie, Y., McPhail, B., Hong, H., Pearce, B.A., Schnackenberg, L.K., Ge, W., Buzatu, D.A., Wilkes, J.G., Fuscoe, J.C., Tong, W., et al. (2012) Modeling Chemical Interaction Profiles: II. Molecular Docking, Spectral Data-Activity Relationship, and Structure-Activity Relationship Models for Potent and Weak Inhibitors of Cytochrome p450 cyp3A4 Isozyme. Molecules, 17, 3407-3460.
http://dx.doi.org/10.3390/molecules17033407

[52]   Ng, H.W., Perkins, R., Tong, W. and Hong, H. (2014) Versatility or Promiscuity: The Estrogen Receptors, Control of Ligand Selectivity and an Update on Subtype Selective Ligands. International Journal of Environmental Research and Public Health, 11, 8709-8742.
http://dx.doi.org/10.3390/ijerph110908709

[53]   Ng, H.W., Shu, M., Luo, H., Ye, H., Ge, W., Perkins, R., Tong, W. and Hong, H. (2015) Estrogenic Activity Data Extraction and in Silico Prediction Show the Endocrine Disruption Potential of Bisphenol a Replacement Compounds. Chemical Research in Toxicology, 28, 1784-1795.
http://dx.doi.org/10.1021/acs.chemrestox.5b00243

[54]   Shen, J., Xu, L., Fang, H., Richard, A.M., Bray, J.D., Judson, R.S., Zhou, G., Colatsky, T.J., Aungst, J.L., Teng, C., Harris, S.C., Ge, W., Dai, S.Y., Su, Z., Jacobs, A.C., Harrouk, W., Perkins, R., Tong, W. and Hong, H. (2013) EADB: An Estrogenic Activity Database for Assessing Potential Endocrine Activity. Toxicological Sciences, 135, 277-291.
http://dx.doi.org/10.1093/toxsci/kft164

[55]   Ding, D., Xu, L., Fang, H., Hong, H., Perkins, R., Harris, S., Bearden, E.D., Shi, L. and Tong, W. (2010) The Edkb: An Established Knowledge Base for Endocrine Disrupting Chemicals. BMC Bioinformatics, 11, S5.
http://dx.doi.org/10.1186/1471-2105-11-S6-S5

[56]   Amber (2010) Version 11 University of California, San Francisco.

[57]   Lindorff-Larsen, K., Piana, S., Palmo, K., Maragakis, P., Klepeis, J.L., Dror, R.O. and Shaw, D.E. (2010) Improved Side-Chain Torsion Potentials for the Amber Ff99sb Protein Force Field. Proteins: Structure, Function, and Bioinformatics, 78, 1950-1958.
http://dx.doi.org/10.1002/prot.22711

[58]   Wang, J., Wolf, R.M., Caldwell, J.W., Kollman, P.A. and Case, D.A. (2004) Development and Testing of a General Amber Force Field. Journal of Computational Chemistry, 25, 1157-1174.
http://dx.doi.org/10.1002/jcc.20035

[59]   Jakalian, A., Jack, D.B. and Bayly, C.I. (2002) Fast, Efficient Generation of High-Quality Atomic Charges. Am1-Bcc Model: Ii. Parameterization and Validation. Journal of Computational Chemistry, 23, 1623-1641.
http://dx.doi.org/10.1002/jcc.10128

[60]   Ryckaert, J.-P., Ciccotti, G. and Berendsen, H.J. (1977) Numerical Integration of the Cartesian Equations of Motion of a System with Constraints: Molecular Dynamics of n-Alkanes. Journal of Computational Physics, 23, 327-341.
http://dx.doi.org/10.1016/0021-9991(77)90098-5

[61]   Darden, T., York, D. and Pedersen, L. (1993) Particle Mesh Ewald: An N*Log (N) Method for Ewald Sums in Large Systems. The Journal of Chemical Physics, 98, 10089-10092.
http://dx.doi.org/10.1063/1.464397

[62]   Rost, B. (1999) Twilight Zone of Protein Sequence Alignments. Protein Engineering, 12, 85-94.
http://dx.doi.org/10.1093/protein/12.2.85

[63]   Yang, A.-S. and Honig, B. (2000) An Integrated Approach to the Analysis and Modeling of Protein Sequences and Structures. Iii. A Comparative Study of Sequence Conservation in Protein Structural Families Using Multiple Structural Alignments. Journal of Molecular Biology, 301, 691-711.
http://dx.doi.org/10.1006/jmbi.2000.3975

[64]   Raval, A., Piana, S., Eastwood, M.P., Dror, R.O. and Shaw, D.E. (2012) Refinement of Protein Structure Homology Models Via Long, All-Atom Molecular Dynamics Simulations. Proteins: Structure, Function, and Bioinformatics, 80, 2071-2079.
http://dx.doi.org/10.1002/prot.24098

[65]   Cheng, X., Wang, H., Grant, B., Sine, S.M. and McCammon, J.A. (2006) Targeted Molecular Dynamics Study of C-Loop Closure and Channel Gating in Nicotinic Receptors. PLoS Computational Biology, 2, e134.
http://dx.doi.org/10.1371/journal.pcbi.0020134

[66]   Liu, X., Xu, Y., Li, H., Wang, X., Jiang, H. and Barrantes, F.J. (2008) Mechanics of Channel Gating of the Nicotinic Acetylcholine Receptor. PLoS Computational Biology, 4, e19.
http://dx.doi.org/10.1371/journal.pcbi.0040019

[67]   Cheng, M.H., Xu, Y. and Tang, P. (2009) Anionic Lipid and Cholesterol Interactions with Α4β2 Nachr: Insights from Md Simulations. The Journal of Physical Chemistry B, 113, 6964-6970.
http://dx.doi.org/10.1021/jp900714b

[68]   Liu, L.T., Haddadian, E.J., Willenbring, D., Xu, Y. and Tang, P. (2009) Higher Susceptibility to Halothane Modulation in Open-Than in Closed-Channel Α4β2 Nachr Revealed by Molecular Dynamics Simulations. The Journal of Physical Chemistry B, 114, 626-632.
http://dx.doi.org/10.1021/jp908944e

[69]   Shu, M., Lin, Z., Zhang, Y., Wu, Y., Mei, H. and Jiang, Y. (2011) Molecular Dynamics Simulation of Oseltamivir Resistance in Neuraminidase of Avian Influenza H5n1 Virus. Journal of Molecular Modeling, 17, 587-592.
http://dx.doi.org/10.1007/s00894-010-0757-x

[70]   Halgren, T. (2007) New Method for Fast and Accurate Binding-Site Identification and Analysis. Chemical Biology & Drug Design, 69, 146-8.
http://dx.doi.org/10.1111/j.1747-0285.2007.00483.x

[71]   Sousa, S.F., Fernandes, P.A. and Ramos, M.J. (2006) Protein-Ligand Docking: Current Status and Future Challenges. Proteins, 65, 15-26.
http://dx.doi.org/10.1002/prot.21082

[72]   Cheng, T., Li, Q., Zhou, Z., Wang, Y. and Bryant, S.H. (2012) Structure-Based Virtual Screening for Drug Discovery: A Problem-Centric Review. AAPS Journal, 14, 133-141.
http://dx.doi.org/10.1208/s12248-012-9322-0

[73]   Celie, P.H., van Rossum-Fikkert, S.E., van Dijk, W.J., Brejc, K., Smit, A.B. and Sixma, T.K. (2004) Nicotine and Carbamylcholine Binding to Nicotinic Acetylcholine Receptors as Studied in Achbp Crystal Structures. Neuron, 41, 907-914.
http://dx.doi.org/10.1016/S0896-6273(04)00115-1

[74]   Ihara, M., Okajima, T., Yamashita, A., Oda, T., Hirata, K., Nishiwaki, H., Morimoto, T., Akamatsu, M., Ashikawa, Y. and Kuroda, S.I. (2008) Crystal Structures of Lymnaea Stagnalis Achbp in Complex with Neonicotinoid Insecticides Imidacloprid and Clothianidin. Invertebrate Neuroscience, 8, 71-81.
http://dx.doi.org/10.1007/s10158-008-0069-3

[75]   Rohde, L.A.H., Ahring, P.K., Jensen, M.L., Nielsen, E.O., Peters, D., Helgstrand, C., Krintel, C., Harpsoe, K., Gajhede, M., Kastrup, J.S. and Balle, T. (2012) Intersubunit Bridge Formation Governs Agonist Efficacy at Nicotinic Acetylcholine Alpha 4 Beta 2 Receptors Unique Role of Halogen Bonding Revealed. Journal of Biological Chemistry, 287, 4248-4259.
http://dx.doi.org/10.1074/jbc.M111.292243

[76]   Rucktooa, P., Haseler, C.A., van Elk, R., Smit, A.B., Gallagher, T. and Sixma, T.K. (2012) Structural Characterization of Binding Mode of Smoking Cessation Drugs to Nicotinic Acetylcholine Receptors through Study of Ligand Complexes with Acetylcholine-Binding Protein. Journal of Biological Chemistry, 287, 23283-23293.
http://dx.doi.org/10.1074/jbc.M112.360347

[77]   Xiu, X., Puskar, N.L., Shanata, J.A., Lester, H.A. and Dougherty, D.A. (2009) Nicotine Binding to Brain Receptors Requires a Strong Cation-π Interaction. Nature, 458, 534-537.
http://dx.doi.org/10.1038/nature07768

 
 
Top