JWARP  Vol.8 No.1 , January 2016
Feasibility Analysis of MERIS as a Tool for Monitoring Lake Guiers (Senegal) Water Quality
Abstract: ENVISAT/MERIS scenes of Lake Guiers covering the period 2003-2010 were processed for concentration retrieval of chlorophyll a (CHLa), suspended particulate matter (SPM) and colored fraction of dissolved organic matter (CDOM), i.e. the three main parameters relevant to the water quality management of the lake. Estimates in the range of 30 - 117 μg CHLa L-1 (average 62.13 μg·L-1), 0.10 - 29.0 mg SPM L-1 (average 22.01 mg·L-1), and 1.10 - 1.90 CDOM m-1 (average 1.33 m-1) were recorded, suggesting the possibility of occasional poor quality waters in some compartments of the lake. The values calculated as part of this study are consistent with literature data. On the basis of these estimates, interpretations were made as to the feasibility of applying MERIS data for synoptic environmental monitoring purposes. The data were subjected to statistical analysis, including regression analysis and significance tests. Estimates of CHLa and CDOM revealed some level of correlation, which suggests that phytoplankton biomass degradation may account for nearly 47% of the dissolved optical compounds CDOM. Notable areas of high CHLa and CDOM concentrations are found in the southern inshore zone, an environment with less water agitation. In contrast, SPM concentrations tend to increase in environments of very shallow water marked by high water turbulence and bottom mobility. However, it was not possible to fully assess the model performance and detection accuracy of the results due to lack of ground truths. Nonetheless, the results show concentrations that compared well with the insitu data from earlier studies and data reported elsewhere from other lacustrine systems. Therefore, it can be inferred from this study that MERIS data present a useful low-cost (i.e. cost effective and readily available) approach for environmental monitoring of Lake Guiers waters with excellent spatial coverage. In addition, the study highlighted the minimal effect of the so-called “bottom effect” on model predictions, despite the small depth of the lake.
Cite this paper: Diop, S. , Wade, S. and Tijani, M. (2016) Feasibility Analysis of MERIS as a Tool for Monitoring Lake Guiers (Senegal) Water Quality. Journal of Water Resource and Protection, 8, 100-119. doi: 10.4236/jwarp.2016.81009.

[1]   Dekker, A.G., Vos, R.J. and Peters, S.W.M. (2001) Comparison of Remote Sensing Data, Model Results and in Situ Data for Total Suspended Matter (SPM) in the Southern Frisian Lakes. Science of the Total Environment, 268, 197-214.

[2]   Dall’Olmo, G. and Gitelson, A.A. (2006) Effect of Bio-Optical Parameter Variability and Uncertainties in Reflectance Measurements on the Remote Estimation of Chlorophyll-A Concentration in Turbid Productive Waters: Modeling Results. Applied Optics, 45, 3577-3592.

[3]   IOCCG (2006) Remote Sensing of Inherent Optical Properties: Fundamentals, Tests of Algorithms, and Applications. In: Lee, Z.P., Ed., Reports of the International Ocean-Colour Coordinating Group, Dartmouth, Vol. 5.

[4]   Gohin, F., Loyer, S., Lunven, M., Labry, C., Froidefond, J.-M., Delmas, D., et al. (2005) Satellite-Derived Parameters for Biological Modeling of Coastal Waters: Illustration over the Eastern Continental Shelf of the Bay of Biscay. Remote Sensing of environment, 95, 29-46.

[5]   Schalles, J.F. (2006) Optical Remote Sensing Techniques to Estimate Phytoplankton Chlorophyll A Concentrations in Coastal Waters with Varying Suspended Matter and CDOM Concentrations. In: Richardson, L. and Ledrew, E., Eds., Remote Sensing of Aquatic Coastal Ecosystem Processes: Science and Management Applications, Springer, 27-79.

[6]   Giardino, C.G., Brando, V.E., Dekker, A.G., Str ömbeck, N. and Candiani, G. (2006) Assessment of Water Quality in Lake Garda (Italy) Using Hyperion. Remote Sensing of Environment, 109, 183-195.

[7]   Schroeder, Th., Schaale, M. and Fischer, J. (2007) Retrieval of Atmospheric and Oceanic Properties from MERIS Measurements: A New Case-2 Water Processor for BEAM. International Journal of Remote Sensing, 28, 5627-5632.

[8]   Schroeder, Th. and Fischer, J. (2003) Atmospheric Correction of MERIS Imagery above Case-2 Waters. Proceedings of the 2003 MERIS User Workshop, ESA ESRIN, Frascati.

[9]   Doerffer, R. and Schiller, H. (2007) The MERIS Case 2 Water Algorithm. International Journal of Remote Sensing, 28, 517-535.

[10]   Doerffer, R. and Fischer, J. (1994) Concentrations of Chlorophyll, Suspended Matter and Gelbstoff in Case II Waters Derived from Satellite CZCS Data with Inverse Modeling Methods. Journal of Geophysical Research-Oceans, 99, 7457-7466.

[11]   Lindell, T., Pierson, D., Premazzi, G. and Zilioli, E. (1999) Manual for Monitoring European Lakes Using Remote Sensing Techniques EUR Report, Vol. 18665, Office for Official Publications of the European Communities (EN), Luxembourg.

[12]   Härmä, P., Vepsäläinen, J., Hannonen, T., Pyhälahti, T., Kämäri, J., Kallio, K., et al. (2001) Detection of Water Quality Using Simulated Satellite Data and Semiempirical Algorithms in Finland. Science of the Total Environment, 268, 107-121.

[13]   Brando, V.E. and Dekker, A.G. (2003) Satellite Hyperspectral Remote Sensing for Estimating Estuarine and Coastal Water Quality. IEEE Transactions on Geoscience and Remote Sensing, 41, 1378-1387.

[14]   Schroeder, Th. and Schaale, M. (2005) Brief Documentation of the FUB/WeW WATER Processor—A Plug-In for MERIS/(A)ATSR Toolbox (BEAM).

[15]   IOCCG (2000) Remote Sensing of Ocean Colour in Coastal, and Other Optically-Complex, Waters. In: Sathyendranath, S., Ed., Reports of the International Ocean-Colour Coordinating Group, No. 3, IOCCG, Dartmouth.

[16]   Sathyendranath, S. and Platt, T. (1997) Analytic Model of Ocean Color. Applied Optics, 36, 2620-2629.

[17]   Gordon, H.R., Brown, O.B., Evans, R.H., Brown, J.W., Smith, R.C., Baker, K.S., et al. (1988) A Semianalytic Radiance Model of Ocean Color. Journal of Geophysical Research, 93, 10909-10924.

[18]   Walker, R.E. (1994) Marine Light Field Statistics. Wiley, New York.

[19]   Arfi, R., Ba, N., Bouvy, M., Corbin, C., Diop, Y., Ka, S., Lebihan, F., Mboup, M., Ndour, E.H., Pagano, M. and Sané, S. (2003) Lac de Guiers (Sénégal). Conditions environnementales et communautés planctoniques. Document Centre IRD Dakar, 77 p.

[20]   Traoré, O. (1995) Etude des échanges hydrogéologiques entre les eaux du lac de Guiers et la nappe alluviale superficiel sous-jascente (Sénégal) Mem. DEA Institut des sciences de l’environnement, 107 p.

[21]   Thiam, A. and Ouattara, M. (1997) Un macrophyte en voie d’envahissement du lac de Guiers (Sénégal): Potamogeton schweinfurthii A. Bennett (Potamogetonaceae). Journal de Botanique, SociétéBotanique de France, 4, 71-78.

[22]   Cogels, F.X., Coly, A. and Niang, A. (1997) Impact of Dam Construction on the Hydrological Regime and Quality of a Sahelian Lake in the River Senegal Basin. Regulated Rivers: Research & Management, 13, 27-41.

[23]   Bamba, S.B. (1985) Première approche de la physico-chimie des eaux intertitielles des sédiments du Lac Guiers (Sénégal). Mémoire de DEA, UCAD, Faculté des Sciences, 60 p.

[24]   Sane, S. (2006) Contrôle environnemental de la production primaire du lac de Guiers au Nord du Sénégal. Thèse doct. 3e cycle UCAD, Dakar, 187 p.

[25]   Ba, N. (2006) La communauté phytoplanctonique du lac de Guiers (senegal): Types d’associations fonctionnelles et approches expérimentales des facteurs de régulation. Thèse doct. 3e cycle UCAD, Dakar, 144 p.

[26]   Carl Bro International (1999) Etude bathymétrique et limnologique du lac de Guiers. Rapport de synthèse Hydroconsult international, SGPRE, 119 p.

[27]   Rast, M. (1999) The ESA Medium Resolution Imaging Spectrometer MERIS—A Review of the Instrument and Its Mission. International Journal of Remote Sensing, 20, 1679-1680.

[28]   Diop, S., Wade, S. and Tijani, M.N. (2008) Analysis of MERIS Data for Lake Guiers’ (SENEGAL) Water Quality Assessment-Preliminary Results. Proceedings of the 2nd MERIS/(A)ATSR User Workshop, Frascati, 22-26 September 2008, 8 p.

[29]   Fomferra, N. and Brockmann, C. (2005) Beam—The ENVISAT MERIS and AATSR Toolbox. Proceedings of the MERIS/(A)ATSR User Workshop, Frascati, 26-30 September 2005.

[30]   Binding, C.E., Jerome, J.H., Bukata, R.P. and Booty, W.G. (2007) Spectral Absorption Properties of Dissolved and Particulate Matter in Lake Erie. Remote Sensing of Environment, 112, 1702-1711.

[31]   Brock, T.C.M., Bos, A.R., Crum, S.J.H. and Gylstra, R. (1995) The Model Ecosystem Approach in Ecotoxicology as Illustrated with a Study on the Fate and Effects of an Insecticide in Stagnant Freshwater Microcosms. In: Hock, B. and Niessner, R., Eds., Immunochemical Detection of Pesticides and Their Metabolites in the Water Cycle (DFG Research Report), VCH, Weinheim, Basel, Cambridge, New York and Tokyo, 167-185.

[32]   Thomann, R.V. and Mueller, J.A. (1987) Principles of Surface Water Quality Modeling and Control. Harper-Collins, New York, 644 p.

[33]   Lung, W.S. (1996) Fate and Transport Modeling Using a Numerical Tracer. Water Resources Research, 32, 171-178.