Back
 JAMP  Vol.4 No.1 , January 2016
Energy Spectrum for a Short-Range 1/r Singular Potential with a Non-Orbital Barrier Using the Asymptotic Iteration Method
Abstract: Using the asymptotic iteration method, we obtain the S-wave solution for a short-range three-parameter central potential with 1/r singularity and with a non-orbital barrier. To the best of our knowledge, this is the first attempt at calculating the energy spectrum for this potential, which was introduced by H. Bahlouli and A. D. Alhaidari and for which they obtained the “potential parameter spectrum”. Our results are also independently verified using a direct method of diagonalizing the Hamiltonian matrix in the J-matrix basis.
Cite this paper: Sous, A. and Alhaidari, A. (2016) Energy Spectrum for a Short-Range 1/r Singular Potential with a Non-Orbital Barrier Using the Asymptotic Iteration Method. Journal of Applied Mathematics and Physics, 4, 79-85. doi: 10.4236/jamp.2016.41012.
References

[1]   Sous, A.J. (2015) The Asymptotic Iteration Method for the Eigen-Energies of the Novel Hyperbolic Single Wave Potential. Journal of Applied Mathematics and Physics, 3, 1406-1411.

[2]   Bahlouli, H. and Alhaidari, A.D. (2010) Extending the Class of Solvable Potentials: III. The Hyperbolic Single Wave. Physica Scripta, 81, Article ID: 025008.
http://dx.doi.org/10.1088/0031-8949/81/02/025008

[3]   Alhaidari, A.D. and Bahlouli, H. (2009) Two New Solvable Potentials. Journal of Physics A: Mathematical and Theoretical, 42, Article ID: 262001.
http://dx.doi.org/10.1088/1751-8113/42/26/262001

[4]   Alhaidari, A.D. (2010) Extending the Class of Solvable Potentials: II. Screened Coulomb Potential with a Barrier. Physica Scripta, 81, Article ID: 025013.
http://dx.doi.org/10.1088/0031-8949/81/02/025013

[5]   Rogers, F.J., Graboske Jr., H.C. and Harwood, D.J. (1970) Bound Eigenstates of the Static Screened Coulomb Potential. Physical Review A, 1, 1577.
http://dx.doi.org/10.1103/PhysRevA.1.1577

[6]   Alhaidari, A.D. (2007) Representation Reduction and Solution Space Contraction in Quasi-Exactly Solvable Systems. Journal of Physics A: Mathematical and Theoretical, 40, 6305.
http://dx.doi.org/10.1088/1751-8113/40/24/004

[7]   Ciftci, H., Hall, R.L. and Saad, N. (2003) Asymptotic Iteration Method for Eigenvalue Problems. Journal of Physics A: Mathematical and Theoretical, 36, Article ID: 11807.
http://dx.doi.org/10.1088/0305-4470/36/47/008

[8]   Ciftci, H., Hall, R.L. and Saad, N. (2005) Construction of Exact Solutions to Eigenvalue Problems by the Asymptotic Iteration Method. Journal of Physics A: Mathematical and Theoretical, 38, 1147-1155.
http://dx.doi.org/10.1088/0305-4470/38/5/015

[9]   Saad, N., Hall, R.L. and Ciftci, H. (2006) Sextic Anharmonic Oscillators and Orthogonal Polynomials. Journal of Physics A: Mathematical and Theoretical, 39, 8477-8486.
http://dx.doi.org/10.1088/0305-4470/39/26/014

[10]   Ozer, O. and Roy, P. (2009) The Asymptotic Iteration Method Applied to Certain Quasinormal Modes and Non-hermitian Systems. Central European Journal of Physics, 7, 747-752.

[11]   Sous, A.J. (2006) Exact Solutions for a Hamiltonian Potential with Two-Parameters Using the Asymptotic Iteration Method. Chinese Journal of Physics, 44, 167-171.

[12]   Soylu, A., Bayrak, O. and Boztosun, I. (2007) An Approximate Solution of Dirac-Hulthén Problem with Pseudospin and Spin Symmetry for Any k State. Journal of Mathematical Physics, 48, Article ID: 082302.
http://dx.doi.org/10.1063/1.2768436

[13]   Barakat, T. (2005) The Asymptotic Iteration Method for the Eigenenergies of the Anharmonic Oscillator Potential V(x) = Ax2α + Bx2. Physics Letters A, 344, 411-417.
http://dx.doi.org/10.1016/j.physleta.2005.06.081

[14]   Sous, A.J. (2006) Solution for the Eigenenergies of the Sextic Anharmonic Oscillator Potential V(x) = A6x6 + A4x4 + A2x2. Modern Physics Letters A, 21, 1675.
http://dx.doi.org/10.1142/S0217732306019918

[15]   Sous, A.J. and El-Kawni, M.I. (2009) General Eigenvalue Problems with Unbounded Potential from Below. International Journal of Modern Physics A, 24, 4169.
http://dx.doi.org/10.1142/S0217751X09044280

[16]   Alhaidari, A.D., Bahlouli, H. and Abdelmonem, M.S. (2008) Taming the Yukawa Potential Singularity: Improved Evaluation of Bound States and Resonance Energies. Journal of Physics A: Mathematical and Theoretical, 41, Article ID: 032001.
http://dx.doi.org/10.1088/1751-8113/41/3/032001

[17]   Munger, C.T. (2007) Ideal Basis Sets for the Dirac Coulomb Problem: Eigenvalue Bounds and Convergence Proofs. Journal of Mathematical Physics, 48, Article ID: 022301.
http://dx.doi.org/10.1063/1.2435595

[18]   Imbo, T., Pagnamenta, A. and Sukhatme, U. (1984) Bound States of the Yukawa Potential via the Shifted 1/N Expansion Technique. Physics Letters A, 105, 183-187.
http://dx.doi.org/10.1016/0375-9601(84)90393-1

[19]   Alhaidari, A.D., Yamani, H.A. and Abdelmonem, M.S. (2001) Relativistic J-Matrix Theory of Scattering. Physical Review A, 63, Article ID: 062708.
http://dx.doi.org/10.1103/PhysRevA.63.062708

 
 
Top