Health  Vol.8 No.1 , January 2016
Controlling Dengue: Effectiveness of Biological Control and Vaccine in Reducing the Prevalence of Dengue Infection in Endemic Areas
Abstract: With the increased prevalence of dengue infection in tropical countries, concerned members of the public are now pressing their local health ministries to act immediately and effectively in managing the rising numbers of reported cases. This includes reviews of the methodologies and the effectiveness of current combative systems to find other possible novel approaches that might yield better results. One of those novel approaches is the integration of a parasite into mosquito vector, manipulating the parasite-host interaction to reduce the transmission of dengue in endemic hotspots. Another alternative is by Sanofi-Pasteur’s dengue vaccine that showed over 60.8% success rate in reducing severe dengue infection in children aged 9 - 16 during its final clinical implementation phase. This report will compare and contrast these two novel ideas to determine which of the approaches are more likely to be effective in the long run. The aspects covered will include the application, effectiveness, functionality, and problems with these approaches. The results could then be utilised by governments or organizations to select precise and effective methods in reducing the prevalence of dengue infections in their countries.
Cite this paper: Paul, B. and Tham, W. (2016) Controlling Dengue: Effectiveness of Biological Control and Vaccine in Reducing the Prevalence of Dengue Infection in Endemic Areas. Health, 8, 64-74. doi: 10.4236/health.2016.81008.

[1]   (2014) Mosquito-Borne Diseases. American Mosquito Control Association.

[2]   McFee, R.B. (2013) Viral Hemorrhagic Fever Viruses. Disease-a-Month, 59, 410-425.

[3]   (2014) Sign and Symptom of Dengue Virus.

[4]   Mangold, K. and Reynolds, S. (2013) Review of Dengue Fever. Pediatric Emergency Care, 29, 665-669.

[5]   Wilson, M.E., Weld, L.H., Boggild, A., Keystone, J.S., Kain, K.C., Sonnenburg, F. and Schwartz, E. (2007) Fever in Return Travellers: Result from the Geosentinel Surveillance Network. Clinical Infectious Diseases, 44, 1560-1568.

[6]   Government of Canada (2014) Dengue Fever.

[7]   Sizmur, C. (2014) Malaysia Steps up Campaign against Dengue.

[8]   Hu, H., Nigmatulina, K. and Eckhoff, P. (2013) The Scaling of Contact Rates with Population Density for the Infectious Disease Models. Mathematical Biosciences, 244, 125-134.

[9]   Tam, J.S., Barbeschi, M., Shapovalova, N., Briand, S., Memish, Z.A. and Kieny, M.P. (2012) Research Agenda for Mass Gatherings: A Call to Action. Lancet Infection, 12, 231-239.

[10]   Miller, J.C. and Voltz, E.M. (2013) Incorporating Disease and Population Structure into Models of SIR Disease in Contact Networks. PloS One, 8, 1-14.

[11]   Wongkoon, S., Jaroensutasinee, M. and Jaroensutasinee, K. (2013) Distribution, Seasonal Variation & Dengue Transmission Prediction in Sisaket, Thailand. Indian Journal of Medical Research, 138, 347-353.

[12]   Colon-Gonzalez, F.J., Fezzi, C., Lake, I.R. and Hunter, P.R. (2013) The Effects of Weather and Climate Change on Dengue. PLoS Neglected Tropical Diseases, 7, 1-9.

[13]   WHO (2015) Dengue Fever Fact Sheet No 117. Updated January 2015.

[14]   Malaysia Remote Sensing Agency (2014)

[15]   Sue-Chern, L. (2014) As Dengue Death Rise, Will Malaysia Try Breeding Out “Bad” Aedes? The Malaysian Insider.

[16]   Paul, B. and Tham, W.L. (2015) Interrelation between Climate and Dengue in Malaysia. Health, 7, 672-678.

[17]   Yacouba, S., Mongkolsapayaa, J. and Screatona, G. (2013) Pathogenesis of Dengue. Current Opinion of Infectious Disease, 26, 284-289.

[18]   Normile, D. (2014) Surprising New Dengue Virus Throws a Spanner in Disease Control Efforts. Science, 342, 415.

[19]   Fu, J., Tan, B.H., Yap, E.H., Chan, Y.C. and Tan, Y.H. (1992) Full-Length cDNA Sequence of Dengue Type 1 Virus (Singapore Strain S275/90). Virology, 188, 953-958.

[20]   Putnak, J.R., Charles, P.C., Padmanabhan, R., Irie, K., Hoke, C.H. and Burke, D.S. (1988) Functional and Antigenic Domains of the Dengue-2 Virus Nonstructural Glyco-protein NS-1. Virology, 163, 93-103.

[21]   Lim, S.P., Ooi, E.E. and Vasudevan, S.G. (2004) Full Length Genomic Sequence of a Dengue Virus of Serotype 3 from Singapore. (Un-published)

[22]   Durbin, A.P., Karron, R.A., Sun, W., Vaughn, D.W., Reynolds, M.J., Perreault, J.R., Thumar, B., Men, R., Lai, C.J., Elkins, W.R., Chanock, R.M., Murphy, B.R. and Whitehead, S.S. (2001) Attenuation and Immunogenicity in Humans of a Live Dengue Virus Type-4 Vaccine Candidate with a 30 Nucleotide Deletion in Its 3’-Untranslated Region. Annual Journal of Tropical Medicine Hygiene, 65, 405-413.

[23]   Wallner, G., Mandl, C.W., Kunz, C. and Heinz, F.X. (1995) The Flavivirus 3’-Noncoding Region: Extensive Size Heterogeneity Independent of Evolutionary Relationships among Strains of Tick-Borne Encephalitis Virus. Virology, 213, 196-178.

[24]   Shah, P.S., Tanaka, M., Khan, A.H., Mathenge, E.G., Fuke, I., Takagi, M., Igarashi, A. and Morita, K. (2006) Molecular Characterization of Attenuated Japanese Encephalitis Live Vaccine Strain ML-17. Vaccine, 24, 402-411.

[25]   Ciota, A.T., Lovelace, A.O., Ngo, K.A., Le, A.N., Maffei, J.G., Franke, M.A., Payne, A.F., Jones, S.A., Kauffman, E.B. and Kramer, L.D. (2007) Cell-Specific Adaptation of Two Flaviviruses Following Serial Passage in Mosquito Cell Culture. Virology, 357, 165-174.

[26]   McMullen, A.R., Albayrak, H., May, F.J., Davis, C.T., Beasley, D.W. and Barrett, A.D. (2013) Molecular Evolution of Lineage 2 West Nile Virus. Journal of General Virology, 94, 318-325.

[27]   Rice, C.M., Lenches, E.M., Eddy, S.R., Shin, S.J., Sheets, R.L. and Strauss, J.H. (1985) Nucleotide Sequence of Yellow Fever Virus: Implications for Flavivirus Gene Expression and Evolution. Science, 229, 726-733.

[28]   Khan, A.H., Morita, K., Parquet, M., Parquet, M. del C., Mathenge, E.G. and Igarashi, A. (2002) Complete Nucleotide Sequence of Chikungunya Virus and Evidence for an Internal Polyadenylation Site. Journal of General Virology, 83, 3075-3084.

[29]   Rodenhuis-Zybert, I.A., Wilschut, J. and Smit, J.M. (2010) Dengue Virus Life Cycle: Viral and Host Factors Modulating Infectivity. Cellular and Molecular Life Sciences, 67, 2773-2786.

[30]   Perera, R. and Kuhn, R.J. (2008) Structural Pro-teomics of Dengue Virus. Current Opinion in Microbiology, 11, 169-178.

[31]   Jain, B., Chaturvedi, U.C. and Jain, A. (2014) Role of Intracellular Events in the Pathogenesis of Dengue: An Overview. Microbial Pathogenesis, 69-70, 45-48.

[32]   Belosovic, M. (2014) Plasmodium sp. Zoology 352 Lecture Series, University of Alberta, Edmonton.

[33]   Buret, A.G. (2014) Pathogenesis of Parasitic Disease. Zoology 352 Lecture Series, University of Alberta, Edmonton.

[34]   Gubler, D.J. (2010) Dengue Viruses. In: Mahy, B.W.J. and Van Regenmortel, M.H.V., Eds., Desk Encyclopedia of Human and Medical Virology, Academic Press, Boston, 372-382.

[35]   Povoa, T.F., Alves, A.M.B., Oliveira, C.A.B., Nuovo, G.J., Chagas, V.L.A. and Paes, M.V. (2014) The Pathology of Severe Dengue in Multiple Organs of Human Fatal Cases: Histopathology, Ultrastructure and Virus Replication. PloS ONE, 9, 1-16.

[36]   Ishikawaa, T., Yamanakab, A. and Konishi, E. (2014) A Review of Successful Flavivirus Vaccines and the Problems with Those Flaviviruses for Which Vaccines Are Not Yet Available. Vaccine, 32, 1326-1337.

[37]   Hoffmann, M.P. and Frodsham, A.C. (1993) Natural Enemies of Vegetable Insect Pests. Cooperative Extension, Cornell University, Ithica, 63 p.

[38]   Bellows, T.S. (2001) Restoring Population Balance through Natural Enemy Introductions. Biological Control, 21, 199-205.

[39]   Marimuthu, S., Rahuman, A.A., Kirthi, A.V., Santhoshkumar, T., Jayaseelan, C. and Rajakumar, G. (2013) Eco-Friendly Microbial Route to Synthesize Cobalt Nanoparticles Using Bacillus thuringiensis against Malaria and Dengue Vectors. Parasitology Resources, 112, 4105-4112.

[40]   Lee, H.L., Chen, C.D., Masri, S.M., Chiang, Y.F., Chooi, K.H. and Benjamin, S. (2008) Impact of Larvaciding with a Bacillus thuringiensis isrealensis Formulation, VectoBac WG, on Dengue Mosquito Vectors in a Dengue Endemic Site in Selangor State Malaysia. Southeast Asian Journal Tropical Medicine Public Health, 39, 601-609.

[41]   Kozek, W. and Rao, R. (2007) The Discovery of Wolbachia in Arthropods and Nematodes—A Historical Perspective. Issues in Infectious Diseases, 5, 1-14.

[42]   Turley, A.P., Moreira, L.A., O’Neill, S.L. and McGraw, E.A. (2009) Wolbachia Infection Reduces Blood-Feeding Success in the Dengue Fever Mosquito, Aedesaegypti. PLoS Neglected Tropical Diseases, 3, 1-7.

[43]   Hancock, P.A., Sinkins, S.P. and Godfray, H.C.J. (2011) Strategies for Introducing Wolbachia to Reduce Transmission of Mosquito-Borne Diseases. PLoS Neglected Tropical Diseases, 5, 1-10.

[44]   Hoffmann, A.A., Iturbe-Ormaetxe, I., Callahan, A.G., Phillips, B.L., Billington, K., Axford, J.K., Montgomery, B., Turley, A.P. and O’Neill, S.L. (2014) Stability of the wMel Wolbachia Infection Following Invasion into Aedesaegypti Populations. PLoS Neglected Tropical Diseases, 8, 1-9.

[45]   Frentiu, F.D., Zakir, T., Walker, T., Popovici, J., Pyke, A.T., Van Der Hurk, A., McGraw, A.E. and O’Neill, S.L. (2014) Limited Dengue Virus Replication in Field-Collected Aedesaegypti Mosquitoes Infected with Wolbachia. PLoS Neglected Tropical Disease, 8, e2688.

[46]   Baron, S., Ed. (1996) Medical Microbiology. 4th Edition, The University of Texas Medical Branch at Galveston, Galveston.

[47]   Chatterjee, S., Ghosh, T.S. and Das, S. (2010) Virulence of Bacillus cereus as Natural Facultative Pathogen of Anopheles subpictus Grassi (Diptera: Culicidae) Larvae in Submerged Rice-Fields and Shallow Ponds. African Journal of Biotechnology, 9, 6983-6986.

[48]   Dayan, G.H., Thakur, M., Boaz, M. and Johnson, C. (2013) Safety and Immunogenicity of Three Tetravalent Dengue Vaccine Formulations in Healthy Adults in the USA. Vaccine, 31, 5048-5055.

[49]   McNeil, M.M., Gee, J., Weintraub, E.S., Belongia, E.A., Lee, G.M., Glanz, J.M., Nordin, J.D., Klein, N.P., Baxter, R., Naleway, A.L., Jackson, L.A., Omer, S.B., Jacobsen, S.J. and DeStefano, F. (2014) The Vaccine Safety Datalink: Successes and Challenges Monitoring Vaccine Safety. Vaccine, 32, 5390-5399.

[50]   Heinz, F.X. and Stiasny, K. (2012) Flaviviruses and Flavivirus Vaccines. Vaccine, 30, 4301-4307.

[51]   Hemming, D. (2014) Immune Regulation to Post 2014. Immunology 371 Lecture Series, University of Alberta, Edmonton.

[52]   Watanaveeradej, V., Gibbons, R.V., Simasathien, S., Nisalak, A., Jarman, R.G., Kerdpanich, A., Tournay, E., De La Barrerra, R., Dessy, F., Toussaint, J.F., Eckels, K.H., Thomas, S.J. and Innis, B.L. (2014) Safety and Immunogenicity of a Rederived, Live-Attenuated Dengue Virus Vaccine in Healthy Adults Living in Thailand: A Randomized Trial. American Journal of Tropical Medicine and Hygiene, 91, 119-128.

[53]   Bhamarapravati, N. and Sutee, Y. (2000) Live Attenuated Tetravalent Dengue Vaccine. Vaccine, 18, 44-47.

[54]   Guirakhoo, F., Weltzin, R., Chambers, T.J., Zhang, Z.-X., Soike, K., Ratterree, M., Arroyo, J., Georgakopoulos, K., Catalan, J. and Monath, T.P. (2000) Recombinant Chimeric Yellow Fever-Dengue Type 2 Virus Is Immunogenic and Protective in Nonhuman Primates. Journal of Virology, 74, 5477-5485.

[55]   Guirakhoo, F., Kitchener, S., Morrison, D., Forrat, R., McCarthy, K., Nichols, R., Yoksan, S., Duan, X., Ermak, T.H., Kanesa-Thasan, N., Bedford, P., Lang, J., Quentin-Miller, M.J. and Monath, T.P. (2006) Live Attenuated Chimeric Yellow Fever Dengue Type 2 (ChimeriVax-DEN2) Vaccine: Phase I Clinical Trial for Safety and Immunogenicity: Effect of Yellow Fever Pre-Immunity in Induction of Cross Neutralizing Antibody Responses to All 4 Dengue Serotypes. Human Vaccine, 2, 60-67.

[56]   Hss, A.-S., Koh, A.-T., Tan, K.K., Chan, L.G., Zhou, L., Bouckenooghe, A., Crevat, D. and Hutagalung, Y. (2013) Safety and Immunogenicity of a Tetravalent Dengue Vaccine in Healthy Children Aged 2-11 Years in Malaysia: A Randomized, Placebo-Controlled, Phase III Study. Vaccine, 31, 5814-5822.

[57]   Huet, N. (2014) Final Trial Confirms Efficacy of Sanofi’s Dengue Vaccine. Reu-ters.

[58]   Villar, L., Dayan, G.H., Arredondo-García, J.L., Rivera, D.M., Cunha, R., Deseda, C., Reynales, H., Costa, M.S., Mo-rales-Ramírez, J.O., Carrasquilla, G., Rey, L.C., Dietze, R., Luz, K., Rivas, E., Montoya, M.C.M., Supelano, M.C., Zambrano, B., Langevin, E., Boaz, M., Tornieporth, N., Saville, M. and Noriega, F. (2015) Efficacy of a Tetravalent Dengue Vaccine in Children in Latin America. The New England Journal of Medicine, 372, 113-123.

[59]   Bernal, A. (2014) The World’s First, Large-Scale Dengue Vaccine Efficacy Study Successfully Achieved Its Primary Endpoint. Sanofi Pasteur Me-dia.

[60]   Belosevic, M. (2014) Concept of Integrated Control against Parasites. Zoology 352 Lecture Series, University of Alberta, Edmonton.

[61]   Buret, A. (2014) Drugs and Parasites. Zoology 352 Lecture Series, University of Alberta, Edmonton.