Back
 AM  Vol.7 No.1 , January 2016
Hydrodynamic Anisotropy Effects on Radiation-Mixed Convection Interaction in a Vertical Porous Channel
Abstract: The effects of hydrodynamic anisotropy on the mixed-convection in a vertical porous channel heated on its plates with a thermal radiation are investigated analytically for fully developed flow regime. The porous medium is anisotropic in permeability whose principal axes are oriented in a direction that is oblique to the gravity. The generalized Brinkman-extended Darcy model which allows the no-slip boundary-condition on solid wall is used in the formulation of the problem. The flow reversal, the thermal radiation influence for natural, and forced convection are considered in the limiting cases for low and high porosity media. It was found that the anisotropic permeability ratio, the orientation angle of the principal axes of permeability and the radiation parameter affected significantly the flow regime and the heat transfer.
Cite this paper: Degan, G. , Akowanou, C. , Fagbemi, L. and Zinsalo, J. (2016) Hydrodynamic Anisotropy Effects on Radiation-Mixed Convection Interaction in a Vertical Porous Channel. Applied Mathematics, 7, 22-39. doi: 10.4236/am.2016.71003.
References

[1]   Nield, A. and Bejan, A. (1999) Convection in Porous Media. Springer, New York.
http://dx.doi.org/10.1007/978-1-4757-3033-3

[2]   Chen, Y.C., Chung, J.N., Wu, C.S. and Lue, Y.F. (2000) Non-Darcy Mixed Convection in a Vertical Channel Filled with a Porous Medium. International Journal of Heat and Mass Transfer, 43, 2421-2429.
http://dx.doi.org/10.1016/S0017-9310(99)00299-9

[3]   Mahmud, S. and Fraser, R.A. (2003) Mixed Convection-Radiation Interaction in a Vertical Porous Channel: Entropy- generation. Energy, 28, 1557-1577.
http://dx.doi.org/10.1016/S0360-5442(03)00154-3

[4]   Jbara, J., Slimi, K. and Mhimid, A. (2011) Combined Radiation and Natural Convection within an Open Ended Porous Channel—Validity of the Rosseland Approximation. Journal of Porous Media, 10, 862-865.
http://dx.doi.org/10.1615/jpormedia.v14.i10.30

[5]   Chauhan, D.S. and Rastogi, P. (2010) Radiation Effects on Natural Convection MHD Flow in a Rotating Vertical Por- ous Channel Partially Filled with a Porous Medium. Applied Mathematical Sciences, 13, 643-655.

[6]   Slimi, K. and Nasrallah, S.B. (2004) A Numerical Study of Coupled Natural Convection and Radiation in a Porous Vertical Channel with the Finite Volume Method. Numerical Heat Transfer, 5, 451-478.
http://dx.doi.org/10.1080/10407780490269003

[7]   Castinel, G. and Combarnous, M. (1974) Critère d’apparition de la convection naturelle dans une couche poreuse anisotrope. Comptes Rendus Hebdomadaires des Sèances de l’Acadèmie des Sciences. Sèries B, 278, 701-704.

[8]   Epherre, J.F. (1975) Critère d’apparition de la convection naturelle dans une couche poreuse anisotrope. Revue Gènèrale de Thermique, 168, 949-950.

[9]   Kvernold, O. and Tyvand, P.A. (1979) Non-Linear Thermal Convection in Anisotropic Porous Media. Journal of Fluid Mechanic, 90, 609-624.
http://dx.doi.org/10.1017/S0022112079002445

[10]   Kimura, S., Masuda, Y. and Kazuo, H.T. (1993) Natural Convection in an Anisotropic Porous Medium Heated from the Side (Effects of Anisotropic Properties of Porous Matrix). Heat Transfer—Japanese Research, 22, 139-153.

[11]   Ni, J. and Beckermann, C. (1991) Natural Convection in a Vertical Enclosure Filled with Anisotropic Porous Media. Journal of Heat Transfer, 113, 1033-1037.
http://dx.doi.org/10.1115/1.2911201

[12]   Tyvand, P.A. and Storesletten, L. (1991) Onset of Convection in an Anisotropic Porous Medium with Oblique Princip- al Axes. Journal of Fluid Mechanics, 226, 371-382.
http://dx.doi.org/10.1017/S0022112091002422

[13]   Zhang, X., Nguyen, T.H. and Kahawita, R. (1993) Convection Flow and Heat Transfer in an Anisotropic Porous Layer with Principal Axes Non-Coincident with the Gravity Vector. Proceeding of ASME Winter Annual Meeting, Funda- mentals of Natural Convection, HTD, 264, 79-86.

[14]   Zhang, X. (1993) Convective Heat Transfer in a Vertical Porous Layer with Anisotropic Permeability. Proceedings of 14th Canadian Congress of Applied Mechanics, 2, 579-580.

[15]   Degan, G., Vasseur, P. and Bilgen, E. (1995) Convective Heat Transfer in a Vertical Anisotropic Porous Layer. International Journal of Heat and Mass Transfer, 38, 1975-1987.
http://dx.doi.org/10.1016/0017-9310(94)00330-X

[16]   Degan, G. and Vasseur, P. (1997) Boundary-Layer Regime in a Vertical Porous Layer with Anisotropic Permeability and Boundary Effects. International Journal of Heat and Fluid Flow, 18, 334-343.
http://dx.doi.org/10.1016/S0142-727X(97)00011-8

[17]   Degan, G. and Vasseur, P. (2002) Aiding Mixed Convection through a Vertical Anisotropic Porous Channel with Oblique Axes. International Journal of Engineering Sciences, 40, 193-209.
http://dx.doi.org/10.1016/S0020-7225(01)00012-X

[18]   Bejan, A. (1996) Entropy Generation Minimization. CRC Press, New York.

[19]   Arpaci, V.S., Selamet, A. and Kao, S.H. (2000) Introduction to Heat Transfer. Prentice Hall, New York.

[20]   Aung, W. and Worku, G. (1986) Theory of Fully Developed, Combined Convection including Flow Reversal. ASME Journal of Heat Transfer, 108, 485-488.
http://dx.doi.org/10.1115/1.3246958

[21]   Aung, W. and Worku, G. (1986) Developing Flow and Flow Reversal in a Vertical Channel with Asymmetric Wall Temperatures. ASME Journal of Heat Transfer, 108, 299-304.
http://dx.doi.org/10.1115/1.3246919

 
 
Top