NS  Vol.3 No.7 , July 2011
Interacting generalized chaplygin gas model in bianchitype-I universe
Abstract: In this paper, we have studied the generalized chaplygin gas of interacting dark energy to ob-tain the equation of state for the generalized chaplygin gas energy density in anisotropic Bianchi type-I cosmological model. For negative value of B in equation of state of generalized chaplygin gas, we see that γ effΛ<-1 , that corresponds to a universe dominated by phantom dark energy.
Cite this paper: Chaubey, R. (2011) Interacting generalized chaplygin gas model in bianchitype-I universe. Natural Science, 3, 513-516. doi: 10.4236/ns.2011.37072.

[1]   Perlmutter, S., et al. (1999) Measurements of Ω and ? from 42 high-redshift supernovae. The Astrophysical Jo- urnal, 517, 565-586. doi:10.1086/307221

[2]   Garnavich, P.M., et al. (1998) Constraints on cosmological models from Hubble Space Telescope observations of high-z supernovae. The Astrophysical Journal, 493, L53. doi:10.1086/311140

[3]   Riess, A.G., et al. (1998) Observational evidence from supernovae for an accelerating universe and cosmological constant. The Astrophysical Journal, 116, 1009-1038. doi:10.1086/300499

[4]   Ratra, B. and Peebles, P.J.E. (1988) Cosmological consequences of a rolling homogeneous scalar field. Physical Review D, 37, 3406-3427.

[5]   Zlatev, I., Wang, L. and Steinhardt, P.J. (1999) Quintessence, cosmic coincidence, and the cosmological constant. Physics Review Letters, 82, 896-899. doi:10.1103/PhysRevD.59.123504

[6]   Kamenshchik, A.Yu., Moschella, U. and Pasquier, V. (2001) An alternative to quintessence. Physics Letters B, 511, 265-268. doi:10.1016/S0370-2693(01)00571-8

[7]   Bazeia, D. and Jackiw, R. (1998) Nonlinear realization of a dynamical poincare symmetry by a field-dependent diffeomorphism. Annals of Physics, 270, 246-259. doi:10.1103/PhysRevD.69.023506

[8]   Billic, N., Tupper, G.B. and Viollier, R.D. (2002) Unification of dark matter and dark energy: the inhomogeneous Chaplygin gas. Physics Letters B, 535, 17-21.

[9]   Bordemann, M. and Hoppe, J. (1993) The dynamics of relativistic membranes. Reduction to 2-dimensional fluid dynamics. Physics Letters B, 317, 315-320. doi:10.1023/A:1015266421750

[10]   Bento, M.C., Bertolami, O. and Sen, A.A. (2003) WMAP constraints on the generalized chaplygin gas model. Physics Letters B, 575, 172-180. doi:10.1103/PhysRevD.72.063511

[11]   Misner, C.W., Thorne, K.S. and Wheeler, J.A. (1973) Gravitation. W.H. freeman, New York.

[12]   Misner, C.W. (1968) The isotropy of the universe. Astrophysics Journal, 151, 431-457.

[13]   Hu, B.L. and Parker, L. (1978) Anisotropy damping through quantum effects in the early universe. Physics Review D, 17, 933-945. doi:10.1103/PhysRevD.17.933

[14]   Setare, M.R. (2007) Interacting generalized Chaplygin gas model in non-flat universe. European Physical Journal, C52, 689-692. doi:10.1140/epjc/s10052-007-0405-5

[15]   Chaubey, R. (2009) Bianchi Type-V universe with wet dark fluid. Astrophysics and Space Science, 321, 241-246. doi:10.1007/s10509-009-0027-5

[16]   Singh, T. and Chaubey, R. (2009) Bianchi type-I, III, V, VIo and Kantowski-Sachs models in scalar-tensor theories with dynamic cosmological constant. Astrophysics and Space Science, 318, 231-236. doi:10.1007/s10509-008-9917-1

[17]   Singh, T. and Chaubey, R. (2008) Bianchi type-I universe with wet dark fluid. Pramana—Journal of Physics, 71, 447-458.

[18]   Singh, T. and Chaubey, R. (2009) Bianchi type-I, III, V, VIo and Kantowski-Sachs universes in creation-field cosmology. Astrophysics and Space Science, 321, 5-18. doi:10.1007/s10509-009-9989-6

[19]   Singh, T. and Chaubey, R. (2009) Bianchi type-III, V, VIo and Kantowski-Sachs universes with varying ?, G and ?2 simultaneously. Proceedings of the National Academy of Sciences, India Section A, 79, 337-354.

[20]   B. Wang, Y. Gong and E. Abdalla, (2005) Transition of the dark energy equation of state in an interacting holographic dark energy model. Physics Letters, B624, 141- 146. doi:10.1016/j.physletb.2005.08.008