JAMP  Vol.4 No.1 , January 2016
The Scaling of Entanglement Entropy for One Spatial XXZ Spin Chain
Abstract: We investigate the scaling of entanglement entropy for one spatial XXZ spin chain by using matrix product states to approximate ground states. The entanglement entropy scales logarithmically with a coefficient that is determined by the associated conformal field theory, the quantum phase transitions occurred between Large-D and Halde phase, Halde phase and Neel phase. The scaling relationship is given in this paper.
Cite this paper: Wang, H. and Xiang, C. (2016) The Scaling of Entanglement Entropy for One Spatial XXZ Spin Chain. Journal of Applied Mathematics and Physics, 4, 48-52. doi: 10.4236/jamp.2016.41008.

[1]   Osborne, T.J. and Nielsen, M.A. (2002) Entanglement in a Simple Quantum Phase Transition. Physical Review A, 66, 032110-4.

[2]   Osterloh, A., Amico, L. Falei, G. and Fazio, R. (2002) Scaling of Entanglement Close to a Quantum Phase Transition. Nature (London), 416, 608-611.

[3]   Vidal, G., Latorre, J.I., Rico, E. and Kitaev, A. (2003) Entanglement in Quantum Critical Phenomena. Physical Review Letters, 90, 227902-4.

[4]   Barnum, H., Russek, S.E. and Silva, T.J. (2004) A Subsystem-Independent Generalization of Entanglement. Physical Review Letters, 92, 107902-4.

[5]   Lambert, N., Emary, C. and Brandes, T. (2004) Entanglement and the Phase Transition in Single-Mode Superradiance. Physical Review Letters, 92, 073602-4.

[6]   Gu, S.-J., Deng, S.-S., Li, Y.-Q. and Lin, H.-Q. (2004) Entanglement and Quantum Phase Transition in the Extended Hubbard Model. Physical Review Letters, 93, 086402-4.

[7]   Sachdev, S. (1999) Quantum Phase Transitions. Cambridge University Press, Cambridge.

[8]   Vidal, G. (2007) Classical Simulation of Infinite-Size Quantum Lattice Systems in One Spatial Dimension. Physical Review Letters, 98, 070201.

[9]   Vidal, G. (2004) Efficient Simulation of One-Dimensional Quantum Many-Body Systems. Physical Review Letters, 93, 040502.

[10]   Barber, M.N. (1983) Phase Transitions and Critical Phenomena Edited by Domb, C. and Lebowitz, J.L., Vol. 8. Academic, New York.

[11]   Chen, W., Hida, K. and Sanctuary, B.C. (2003) Ground-State Phase Diagram of S = 1 XXZ Chains with Uniaxial Single-Ion-Type Anisotropy. Physical Review B, 67, Article ID: 104401.

[12]   Schulz, H.-J. (1986) Phase Diagrams and Correlation Exponents for Quantum Spin Chains of Arbitrary Spin Quantum Number. Physical Review B, 34, 6372.

[13]   Nijs, M. and Rommelse, K. (1989) Preroughening Transitions in Crystal Surfaces and Valence-Bond Phases in Quantum Spin Chains. Physical Review B, 40, 4709-4734.

[14]   Amico, L., Fazio, R., Osterloh, A. and Vedral, V. (2008) Entanglement in Many-Body Systems. Review Modern Physical, 80, 517-576.

[15]   Hastings, M.B. (2007) An Area Law for One-Dimensional Quantum Systems. Journal of Statistics and Mechanics, 2007, Article ID: P08024.

[16]   Wang, H.L. and Xiong, X.L. (2014) The Finite Scaling for S = 1 XXZ Chains with Uniaxial Single-Ion-Type Anisotropy. The European Physical Journal D, 68, 54.

[17]   Calabrese, P. and Cardy, J. (2004) Entanglement Entropy and Quantum Field Theory. Journal of Statistics and Mechanics, 2004, Article ID: P06002.

[18]   Ryu, S. and Hatsugai, Y. (2006) Entanglement Entropy and the Berry Phase in the Solid State. Physical Review B, 73, Article ID: 245115.

[19]   Lepori, L., De Chiara, G. and Sanpera, A. (2013) Scaling of the Entanglement Spectrum near Quantum Phase Transitions. Physical Review B, 87, Article ID: 235107.

[20]   Nagy, A. (2011) Exploring Phase Transitions by Finite-Entanglement Scaling of MPS in the 1D ANNNI Model. New Journal of Physics, 13, Article ID: 023015.

[21]   Matsueda, H. (2011) Scaling of Entanglement Entropy and Hyperbolic Geometry. arXiv: 1112.5566.

[22]   Pirvu, B., Vidal, G., Verstraete, F. and Tagliacozzo, L. (2012) Matrix Product States for Critical Spin Chains: Finite Size Scaling versus Finite Entanglement Scaling. Physical Review B, 86, Article ID: 075117.