Back
 OJCM  Vol.6 No.1 , January 2016
Longitudinal Compressive Failure of Multiple-Fiber Model Composites for a Unidirectional Carbon Fiber Reinforced Plastic
Abstract: The longitudinal compressive failure of a unidirectional carbon fiber reinforced plastic (CFRP) was studied using multiple-fiber model composites. Aligned carbon fibers were embedded in an epoxy matrix and put on a rectangular beam. A compression test of the model composite was performed by means of a four point bending test of the rectangular beam. The number of carbon fibers was changed from one to several thousands, by which the effect on compressive failure modes was investigated. A compressive failure of a single-fiber model composite was fiber crush. The fiber crush strain was much higher than the compressive failure strain of the unidirectional carbon fiber reinforced plastic. By contrast, a compressive failure of a multiple-fiber model composite was kink-band. The longitudinal compressive failure mechanism shifted from fiber crush to kink-band due to an increasing number of fibers. Kink-band parameters i.e. kink-band angle and kink-band width were dependent on the number of closely-aligned carbon fibers.
Cite this paper: Jeong, T. and Ueda, M. (2016) Longitudinal Compressive Failure of Multiple-Fiber Model Composites for a Unidirectional Carbon Fiber Reinforced Plastic. Open Journal of Composite Materials, 6, 8-17. doi: 10.4236/ojcm.2016.61002.
References

[1]   Toray Technical Data Sheet, No. CFA-008(T1000G).

[2]   Ueda, M., Saito,W., Imahori,R., Kanazawa, D. and Jeong, T.K. (2014) Longitudinal Direct Compression Test of a Single Carbon Fiber in a Scanning Electron Microscope. Composites Part A, 67, 96-101. http://www.sciencedirect.com/science/article/pii/S1359835X14002541 http://dx.doi.org/10.1016/j.compositesa.2014.08.021

[3]   Soutis, C., Curtis, P.T. and Fleck, N.A. (1993) Compressive Failure of Notched Carbon Fibre Composite. Mathematical and Physical Sciences, 440, 241-256. http://www.jstor.org/stable/52233?seq=1#page_scan_tab_contents

[4]   Kyriakides, S., Arseculeratne, R., Perry, E.J. and Liechti, K.M. (1995) On the Compressive Failure of Fiber Reinforced Composites. International Journal of Solids and Structures, 32, 689-738. http://www.sciencedirect.com/science/article/pii/002076839400157R http://dx.doi.org/10.1016/0020-7683(94)00157-R

[5]   Morgan, P.M., Liu, X.U. and Shih, C.F. (1995) Kink Band Formation and Band Broadening in Fiber Composites under Compressive Loading. Acta Metallurgica et Materialia, 43, 2943-2958. http://www.sciencedirect.com/science/article/pii/095671519500001C http://dx.doi.org/10.1016/0956-7151(95)00001-C

[6]   Berbinau, P., Soutis, C. and Guz, I.A. (1999) Compressive Failure of 0° Unidirectional Carbon-Fibre-Reinforced Plastic (CFRP) Laminates by Fibre Microbuckling. Composites Science and Technology, 59, 1451-1455. http://www.sciencedirect.com/science/article/pii/S026635389800181X http://dx.doi.org/10.1016/S0266-3538(98)00181-X

[7]   Soutis, C. and Curtis, P.T. (2000) A Method for Predicting the Fracture Toughness of CFRP Laminates Failing by Fibre Microbuckling. Composites Part A, 31, 733-740. http://www.sciencedirect.com/science/article/pii/S1359835X00000038 http://dx.doi.org/10.1016/S1359-835X(00)00003-8

[8]   Vogler, T.J. and Kyriakides, S. (200l) On the Initiation and Growth of Kink Bands in Fiber Composites: Part I. Experiments. International Journal of Solids and Structures, 38, 2639-2651. http://www.sciencedirect.com/science/article/pii/S0020768300001748

[9]   Vogler, T.J., Hsu, S.Y. and Kyriakides, S. (2001) On the Initiation and Growth of Kink Bands in Fiber Composites. Part II: Analysis. International Journal of Solids and Structures, 38, 2653-2682. http://www.sciencedirect.com/science/article/pii/S002076830000175X

[10]   Sutcliffe, M.P.F. and Yumono, A.H. (2001) Experimental Study of Microbuckle Initiation in a Model Composite System. Scripta Materialia, 45, 831-837. http://www.sciencedirect.com/science/article/pii/S1359646201011022 http://dx.doi.org/10.1016/s1359-6462(01)01102-2

[11]   Lee, J. and Soutis, C. (2007) A Study on the Compressive Strength of Thick Carbon Fibre—Epoxy Laminates. Composites Science and Technology, 67, 2015-2026. http://www.sciencedirect.com/science/article/pii/S0266353806004520

[12]   Pimenta, S., Gutkin, R., Pinho, S.T. and Robinson, P. (2009) A Micromechanical Model for Kink-Band Formation: Part I—Experimental Study and Numerical Modelling. Composites Science and Technology, 69, 948-955. http://www.sciencedirect.com/science/article/pii/S026635380900061X

[13]   Pimenta, S., Gutkin, R., Pinho, S.T. and Robinson, P. (2009) A Micromechanical Model for Kink-Band Formation: Part II—Analytical Modelling. Composites Science and Technology, 69, 956-964. http://www.sciencedirect.com/science/article/pii/S0266353809000529

[14]   Jumahat, A., Soutis, C., Jones, F.R. and Hodzic, A. (2010) Fracture Mechanisms and Failure Analysis of Carbon Fibre/Toughened Epoxy Composites Subjected to Compressive Loading. Composite Structures, 92, 295-305. http://www.sciencedirect.com/science/article/pii/S0263822309002839

[15]   Gutkin, R., Pinho, S.T., Robinson, P. and Curtis, P.T. (2010) On the Transition from Shear-Driven Fibre Compressive Failure to Fibre Kinking in Notched CFRP Laminates under Longitudinal Compression. Composites Science and Technology, 70, 1223-1231. http://www.sciencedirect.com/science/article/pii/S0266353810001119

[16]   Hapke, J., Gehrig, F., Huber, N., Schulte, K. and Lilleodden, E.T. (2011) Compressive Failure of UD-CFRP Containing Void Defects: In Situ SEM Microanalysis. Composites Science and Technology, 71, 1242-1249. http://www.sciencedirect.com/science/article/pii/S0266353811001424

[17]   Ueda, M., Mimura, K. and Jeong, T.K. (2014) In Situ Observation of Kink-Band Formation in a Unidirectional Carbon Fiber Reinforced Plastic by X-Ray Computed Tomography Imaging. Advanced Composite Materials (in Press).

[18]   Hawthorne, H.M. and Teghtsoonian, E. (1975) Axial Compression Fracture in Carbon Fibres. Journal of Material Science, 10, 41-51. http://link.springer.com/article/10.1007/BF00541030

[19]   Deteresa, S.J. (1991) Piezoresistivity and Failure of Carbon Filaments in Axial Compression. Carbon, 29, 397-409. http://www.sciencedirect.com/science/article/pii/0008622391902092

[20]   Nishi, Y. and Hirano, M. (2007) Bending Stress Dependent Electrical Resistivity of Carbon Fiber in Polymer for Health Monitoring System. Journal of Material Science, 48, 2735-2738. http://dx.doi.org/10.2320/matertrans.mra2007105

[21]   Tanaka, F., Okabe, T., Okuda, H., Kinloch, I.A. and Young, R.A. (2013) The Effect of Nanostructure upon the Compressive Strength of Carbon Fibres. Journal of Material Science, 48, 2104-2110. http://link.springer.com/article/10.1007/s10853-012-6984-z

[22]   Liebig, W.V., Leopold, C. and Schulte, K. (2013) Photoelastic Study of Stresses in the Vicinity of a Unique Void in a Fibre-Reinforced Model Composite under Compression. Composites Science and Technology, 84, 72-77. http://www.sciencedirect.com/science/article/pii/S026635381300167X

[23]   Jeong, T.K., Ueda, M. and Hiraga, A. (2015) Measurement of a Longitudinal Compressive Modulus of Carbon Fiber Using a Single-Fiber Model Composite. Material System, 33, 13-19. (In Japanese)

[24]   Liebig, W.V., Vies, C., Schulte, K. and Fiedler, B. (2015) Influence of Voids on the Compressive Failure Behaviour of Fibre-Reinforced Composites. Composites Science and Technology, 117, 225-233. http://www.sciencedirect.com/science/article/pii/S0266353815300294

[25]   Toray Technical Data Sheet, No. CFA-019(T800S).

[26]   ASTM Standard D695-02a (2002) Compressive Properties of Rigid Plastics. ASTM International.

 
 
Top