[1] C. Corduneanu, “Almost Periodic Discrete Processes,” Libertas Mathematica, Vol. 2, 1982, pp. 159-169.
[2] J. Hong and C. Nú?ez, “The Almost Periodic Type Difference Equations,” Mathematical and Computer Modelling, Vol. 28, No. 12, 1998, pp. 21-31. doi:10.1016/S0895-7177(98)00171-X
[3] S. Elaydi, “An Introduction to Difference Equations,” 3rd Edition, Springer-Verlag, Berlin, 2000.
[4] E. A. Dads and L. Lha-chimi, “New Approach for the Existence of Pseudo Almost Periodic Solutions for Some Second Order Differential Equa-tion with Piecewise Constant Argument,” Nonlinear Analysis: Theory, Methods and Applications, Vol. 64, No. 6, 2006, pp. 1307-1324. doi:10.1016/j.na.2005.06.037
[5] A. I. Alonso, J. Hong and J. Rojo, “A Class of Ergodic Solutions of Differentiale Quations with Piecewise Constant Arguments,” Dynamic Systems and Applications, Vol. 7, 1998, pp. 561-574.
[6] A. M. Fink, “Almost-Periodic Differential Equations, Lecture Notes in Mathematics,” Springer-Verlag, Berlin, Vol. 377, 1974.
[7] S. Zaidman, “Solutions Presque-Périodiques des équations Dif-férentielles Abstraites,” L’Enseignement Mathé- matique, Vol. 24, No. 1-2, 1978, pp. 87-110.
[8] S. Zaidman, “A Non-Linear Abstract Differential Equation with Al-most-Periodic Solution,” Rivista di Matematica della Univer-sità di Parma, Vol. 10, No. 4, 1984, pp. 331-336.
[9] C. Zhang, “Pseudo Almost Periodic Functions and Their Applica-tions,” Ph.D Thesis, University of Western Ontario, London, Canada, 1992.
[10] C. Zhang, “Pseudo Almost-Periodic Solu-tions of Some Differential Equations,” Journal of Mathemati-cal Analysis and Applications, Vol. 181, No. 1, 1994, pp. 62-76. doi:10.1006/jmaa.1994.1005
[11] C. Zhang, “Integration of Vector-Valued Pseudo Almost Periodic Functions,” Proceeding of the American Mathematical Society, Vol. 121, No. 1, 1994.
[12] C. Zhang, “A Characterization of Pseudo Almost Periodic Functions in Fourier Analysis,” Acta Analysis Func-tionalis Applicata, Vol. 4, 2002, pp. 110-114.
[13] C. Zhang, “Almost Periodic Type Functions and Ergodicity,” Kluwer Academic Publishers, Dordrecht, 2003.
[14] S. M. Shah and J. Weiner, “Advanced Differential Equations with Piecewise Constant Argument Deviations,” International Journal of Mathematics and Mathematical Sciences, Vol. 6, No. 4, 1983, pp. 671-703. doi:10.1155/S0161171283000599
[15] Y. Rong and H. Jialin, “The Existence of Almost Periodic Solutions for a Class of differential Equations with Piecewise Constant Argument,” Nonlinear Analysis: Theory, Methods and Applications, Vol. 28, No 8, 1997, pp. 1439-1450. doi:10.1016/0362-546X(95)00225-K
[16] Y. Rong, “Existence of Almost Periodic Solutions of Second Order Neutral Delay Differential Equations with Piecewise Constant Argument,” Science in China (Series A), Vol. 41, No. 3, 1998, pp. 232-241. doi:10.1007/BF02879041
[17] R. Yuan, “Pseudo-Almost Pe-riodic Solutions of Second-Order Neutral Delay Differential Equations with Piece- wise Constant Argument,” Nonlinear Analysis: Theory, Methods and Applications, Vol. 41, No. 7-8, 2000, pp. 871-890. doi:10.1016/S0362-546X(98)00316-2
[18] Y. Rong and T. Kupper, “On Quasi-Periodic Solutions of Differential Equa-tions with Piecewise Constant Argument,” Journal of Mathe-matical Analysis and Applications, Vol. 267, No. 1, 2002, pp. 173-193. doi:10.1006/jmaa.2001.7761
[19] Y. Rong, “On a New Al-most Periodic Type Solution of a Class of Singularly Perturbed Differential Equations with Piecewise Constant Argument,” Science in China (Series A), Vol. 45, No. 4, 2002, pp. 484-502. doi:10.1007/BF02872337
[20] Y. Rong, “The Existence of Almost Periodic Solutions of Retarded Differential Equations with Piecewise Constant Argument,” Nonlinear Analysis: The-ory, Methods and Applications, Vol. 48, No. 7, 2002, pp. 1013-1032