Back
 AM  Vol.6 No.14 , December 2015
The Schultz Index and Schultz Polynomial of the Jahangir Graphs J 5, m
Abstract: Let G be simple connected graph with the vertex and edge sets V (G) and E (G), respectively. The Schultz and Modified Schultz indices of a connected graph G are defined as and , where d (u, v) is the distance between vertices u and v ; dv is the degree of vertex v of G. In this paper, computation of the Schultz and Modified Schultz indices of the Jahangir graphs J5,m is proposed.
Cite this paper: Farahani, M. and Gao, W. (2015) The Schultz Index and Schultz Polynomial of the Jahangir Graphs J 5, m . Applied Mathematics, 6, 2319-2325. doi: 10.4236/am.2015.614204.
References

[1]   Wiener, H. (1947) Structural Determination of Paraffin Boiling Points. Journal of the American Chemical Society, 69, 17-20.
http://dx.doi.org/10.1021/ja01193a005

[2]   Gutman, I. and Polansky, O.E. (1986) Mathematical Concepts in Organic Chemistry. Springer, Berlin.
http://dx.doi.org/10.1007/978-3-642-70982-1

[3]   Gutman, I., Klavzar, S. and Mohar, B., Eds. (1997) Fifty Years of the Wiener Index. MATCH Communications in Mathematical and in Computer Chemistry, 35, 1-259.

[4]   Gutman, I., Klavzar, S. and Mohar, B., Eds. (1997) Fiftieth Anniversary of the Wiener Index. Discrete Applied Mathematics, 80, 1-113.

[5]   Farahani, M.R. (2013) Hosoya Polynomial, Wiener and Hyper-Wiener Indices of Some Regular Graphs. Informatics Engineering, an International Journal (IEIJ), 1, 9-13.

[6]   Farahani, M.R. and Rajesh Kanna, M.R. (2015) Computing Hosoya Polynomial, Wiener Index and Hyper-Wiener Index of Harary Graph. Applied Mathematics, 5, 93-96.

[7]   Farahani, M.R. (2015) Computation of the Wiener Index of Harary Graph. Fundamental Journal of Mathematics and Mathematical Science, 2, 45-54.

[8]   Hosoya, H. (1988) On Some Counting Polynomials in Chemistry. Discrete Applied Mathematics, 19, 239-257.
http://dx.doi.org/10.1016/0166-218X(88)90017-0

[9]   Schultz, H.P. (1989) Topological Organic Chemistry 1. Graph Theory and Topological Indices of Alkanes. Journal Chemical Information and Computational Science, 29, 227-228.
http://dx.doi.org/10.1021/ci00063a012

[10]   Klavzar, S. and Gutman, I. (1996) A Comparison of the Schultz Molecular Topological Index with the Wiener Index. Journal Chemical Information and Computational Science, 36, 1001-1003.
http://dx.doi.org/10.1021/ci9603689

[11]   Todeschini, R. and Consonni, V. (2000) Handbook of Molecular Descriptors. Wiley VCH, Weinheim.
http://dx.doi.org/10.1002/9783527613106

[12]   Karelson, M. (2000) Molecular Descriptors in QSAR/QSPR. Wiley Interscience, New York.

[13]   Iranmanesh, A. and Alizadeh, Y. (2008) Computing Wiener and Schultz Indices of Nanotube by GAP Program. American Journal of Applied Sciences, 5, 1754-1757.
http://dx.doi.org/10.3844/ajassp.2008.1754.1757

[14]   Eliasi, M. and Taeri, B. (2008) Schultz Polynomials of Composite Graphs. Applicable Analysis and Discrete Mathematics, 2, 285-296.
http://dx.doi.org/10.2298/AADM0802285E

[15]   Iranmanesh, A. and Alizadeh, Y. (2009) Computing Szeged and Schultz Indices of Nanotube by Gap Program. Digest Journal of Nanomaterials and Biostructures, 4, 67-72.

[16]   Alizadeh, Y., Iranmanesh, A. and Mirzaie, S. (2009) Computing Schultz Polynomial, Schultz Index of C60 Fullerene by Gap Program. Digest Journal of Nanomaterials and Biostructures, 4, 7-10.

[17]   Iranmanesh, A. and Alizadeh, Y. (2009) Computing Hyper-Wiener and Schultz Indices of Nanotube by Gap Program. Digest Journal of Nanomaterials and Biostructures, 4, 607-611.

[18]   Halakoo, O., Khormali, O. and Mahmiani, A. (2009) Bounds for Schultz Index of Pentachains. Digest Journal of Nanomaterials and Biostructures, 4, 687-691.

[19]   Heydari, A. and Taeri, B. (2007) Wiener and Schultz Indices of Nanotubes. MATCH Communications in Mathematical and in Computer Chemistry, 57, 665-676.

[20]   Heydari, A. (2010) Schultz Index of Regular Dendrimers. Optoelectronics and Advanced Materials: Rapid Communications, 4, 2209-2211.

[21]   Heydari, A. (2010) On the Modified Schultz Index of Nanotubes and Nanotorus. Digest Journal of Nanomaterials and Biostructures, 5, 51-56.

[22]   Hedyari, A. (2011) Wiener and Schultz Indices of V-Naphthalene Nanotori. Optoelectronics and Advanced Materials: Rapid Communications, 5, 786-789.

[23]   Farahani, M.R. and Vlad, M.P. (2012) On the Schultz, Modified Schultz and Hosoya Polynomials and Derived Indices of Capra-Designed Planar Benzenoid. Studia UBB Chemia, 57, 55-63.

[24]   Farahani, M.R. (2013) On the Schultz and Modified Schultz Polynomials of Some Harary Graphs. International Journal of Applications of Discrete Mathematics, 1, 1-8.

[25]   Gao, W. and Wang, W.F. (2015) The Vertex Version of Weighted Wiener Number for Bicyclic Molecular Structures. Computational and Mathematical Methods in Medicine, 2015, 1-10.
http://dx.doi.org/10.1155/2015/418106

[26]   Farahani, M.R. (2013) Hosoya, Schultz, Modified Schultz Polynomials and Their Topological Indices of Benzene Molecules: First Members of Polycyclic Aromatic Hydrocarbons (PAHs). International Journal of Theoretical Chemistry, 1, 9-16.

[27]   Farahani, M.R. (2013) On the Schultz Polynomial, Modified Schultz Polynomial, Hosoya Polynomial and Wiener Index of Circumcoronene Series of Benzenoid. Applied Mathematics & Information Sciences, 31, 595-608.
http://dx.doi.org/10.14317/jami.2013.595

[28]   Raut, N.K. (2014) Topological Indices and Polynomials in Isomers of Organic Compounds. International Journal of Mathematics and Computer Research, 2, 456-461.

[29]   Raut, N.K. (2014) Schultz, Modified Schultz and Hosoya Polynomials and Their Indices in 2,3-Dimethyl Hexane an Isomer of Octane. International Journal of Mathematics and Computer Research, 2, 587-592.

[30]   Ali, K., Baskoro, E.T. and Tomescu, I. (2007) On the Ramzey Number of Paths and Jahangir Graph J3,m. Proceedings of the 3rd International Conference on 21st Century Mathematics, Lahore, 4-7 March 2007.

[31]   Mojdeh, D.A. and Ghameshlou, A.N. (2007) Domination in Jahangir Graph J2,m. International Journal of Contemporary Mathematical Sciences, 2, 1193-1199.

[32]   Ramachandran, M. and Parvathi, N. (2015) The Medium Domination Number of a Jahangir Graph Jm,n. Indian Journal of Science and Technology, 8, 400-406.
http://dx.doi.org/10.17485/ijst/2015/v8i5/60462

[33]   Farahani, M.R. (2015) Hosoya Polynomial and Wiener Index of Jahangir Graphs J2,m. Pacific Journal of Applied Mathematics, 7, In Press.

[34]   Farahani, M.R. (2015) The Wiener Index and Hosoya Polynomial of a Class of Jahangir Graphs J3,m. Fundamental Journal of Mathematics and Mathematical Science, 3, 91-96.

[35]   Farahani, M.R. (2015) Hosoya Polynomial of Jahangir Graphs J4,m. Global Journal of Mathematics, 3, 232-236.

 
 
Top