[1] Boissier, S., Magnetto, S., Frappart, L., Cuzin, B., Ebetino, F.H., Delmas, P.D. and Clezardin, P. (1997) Bisphosphonates Inhibit Prostate and Breast Carcinoma Cell Adhesion to Unmineralized and Mineralized Bone Extracellular Matrices. Cancer Research, 57, 3890-3894.
[2] Coleman, R.E. (2008) Risks and Benefits of Bisphosphonates. British Journal of Cancer, 98, 1736-1740.
http://dx.doi.org/10.1038/sj.bjc.6604382
[3] Stresing, V., Daubine, F., Benzaid, I., Monkkonen, H. and Clezardin, P. (2007) Bisphosphonates in Cancer Therapy. Cancer Letters, 257, 16-35.
http://dx.doi.org/10.1016/j.canlet.2007.07.007
[4] Fantner, G.E., Hassenkam, T., Kindt, J.H., Weaver, J.C., Birkedal, H., Pechenik, L., Cutroni, J.A., Cidade, G.A., Stucky, G.D., Morse, D.E. and Hansma, P.K. (2005) Sacrificial Bonds and Hidden Length Dissipate Energy as Mineralized Fibrils Separate during Bone Fracture. Nature Materials, 4, 612-616.
http://dx.doi.org/10.1038/nmat1428
[5] Gao, H., Ji, B., Jager, I.L., Arzt, E. and Fratzl, P. (2003) Materials Become Insensitive to Flaws at Nanoscale: Lessons from Nature. Proceedings of the National Academy of Sciences of the United States of America, 100, 5597-5600.
http://dx.doi.org/10.1073/pnas.0631609100
[6] Gupta, H.S., Wagermaier, W., Zickler, G.A., Raz-Ben Aroush, D., Funari, S.S., Roschger, P., Wagner, H.D. and Fratzl, P. (2005) Nanoscale Deformation Mechanisms in Bone. Nano Letters, 5, 2108-2111.
http://dx.doi.org/10.1021/nl051584b
[7] Tai, K., Ulm, F.J. and Ortiz, C. (2006) Nanogranular Origins of the Strength of Bone. Nano Letters, 6, 2520-2525.
http://dx.doi.org/10.1021/nl061877k
[8] Morgan, E.F., Bayraktar, H.H. and Keaveny, T.M. (2003) Trabecular Bone Modulus-Density Relationships Depend on Anatomic Site. Journal of Biomechanics, 36, 897-904.
http://dx.doi.org/10.1016/S0021-9290(03)00071-X
[9] Pope, M.H. and Outwater, J.O. (1974) Mechanical Properties of Bone as a Function of Position and Orientation. Journal of Biomechanics, 7, 61-66.
http://dx.doi.org/10.1016/0021-9290(74)90070-0
[10] Gupta, H.S., Stachewicz, U., Wagermaier, W., Roschger, P., Wagner, H.D. and Fratzl, P. (2006) Mechanical Modulation at the Lamellar Level in Osteonal Bone. Journal of Materials Research, 21, 1913-1921.
http://dx.doi.org/10.1557/jmr.2006.0234
[11] Rho, J.Y., Roy, M.E., 2nd, Tsui, T.Y. and Pharr, G.M. (1999) Elastic Properties of Microstructural Components of Human Bone Tissue as Measured by Nanoindentation. Journal of Biomedical Materials Research, 45, 48-54.
http://dx.doi.org/10.1002/(SICI)1097-4636(199904)45:1<48::AID-JBM7>3.0.CO;2-5
[12] Martin, R.B. and Burr, D.B. (1989) Structure, Function and Adaptation of Compact Bone. Raven Press, New York.
[13] Balooch, G., Balooch, M., Nalla, R.K., Schilling, S., Filvaroff, E.H., Marshall, G.W., Marshall, S.J., Ritchie, R.O., Derynck, R. and Alliston, T. (2005) TGF-Beta Regulates the Mechanical Properties and Composition of Bone Matrix. Proceedings of the National Academy of Sciences of the United States of America, 102, 18813-18818.
http://dx.doi.org/10.1073/pnas.0507417102
[14] Jaasma, M.J., Bayraktar, H.H., Niebur, G.L. and Keaveny, T.M. (2002) Biomechanical Effects of Intraspecimen Variations in Tissue Modulus for Trabecular Bone. Journal of Biomechanics, 35, 237-246.
http://dx.doi.org/10.1016/S0021-9290(01)00193-2
[15] Peterlik, H., Roschger, P., Klaushofer, K. and Fratzl, P. (2006) From Brittle to Ductile Fracture of Bone. Nature Materials, 5, 52-55.
http://dx.doi.org/10.1016/S0021-9290(01)00193-2
[16] Phelps, J.B., Hubbard, G.B., Wang, X. and Agrawal, C.M. (2000) Microstructural Heterogeneity and the Fracture Toughness of Bone. Journal of Biomedical Materials Research, 51, 735-741.
http://dx.doi.org/10.1002/1097-4636(20000915)51:4<735::AID-JBM23>3.0.CO;2-G
[17] Currey, J. (2005) Structural Heterogeneity in Bone: Good or Bad? Journal of Musculoskeletal & Neuronal Interactions, 5, 317.
[18] Tai, K., Dao, M., Suresh, S., Palazoglu, A. and Ortiz, C. (2007) Nanoscale Heterogeneity Promotes Energy Dissipation in Bone. Nature Materials, 6, 454-462.
http://dx.doi.org/10.1038/nmat1911
[19] Engler, A.J., Richert, L., Wong, J.Y., Picart, C. and Discher, D.E. (2004) Surface Probe Measurements of the Elasticity of Sectioned Tissue, Thin Gels and Polyelectrolyte Multilayer Films: Correlations between Substrate Stiffness and Cell Adhesion. Surface Science, 570, 142-154.
http://dx.doi.org/10.1016/j.susc.2004.06.179
[20] Ehrlich, P.J. and Lanyon, L.E. (2002) Mechanical Strain and Bone Cell Function: A Review. Osteoporosis International, 13, 688-700.
http://dx.doi.org/10.1007/s001980200095
[21] You, L., Cowin, S.C., Schaffler, M.B. and Weinbaum, S. (2001) A Model for Strain Amplification in the Actin Cytoskeleton of Osteocytes Due to Fluid Drag on Pericellular Matrix. Journal of Biomechanics, 34, 1375-1386.
http://dx.doi.org/10.1016/S0021-9290(01)00107-5
[22] Peyruchaud, O., Serre, C.M., NicAmhlaoibh, R., Fournier, P. and Clezardin, P. (2003) Angiostatin Inhibits Bone Metastasis Formation in Nude Mice through a Direct Anti-Osteoclastic Activity. Journal of Biomechanics, 278, 45826-45832
[23] Cowin, S.C. (1999) Bone Poroelasticity. Journal of Biomechanics, 32, 217-238.
http://dx.doi.org/10.1016/S0021-9290(98)00161-4