[1] Ferrenberg, A.M., Lanau, D.P. and Wong, Y.J. (1992) Monte Carlo Simulations: Hidden Errors from? Good Random Number Generators? Physical Review Letters, 69, 3382-3384.
http://dx.doi.org/10.1103/PhysRevLett.69.3382
[2] Griliches, Z. (1961) A Note on Serial Correlation Bias in Estimates of Distributed Lags. Econometrica, 29, 65-73.
http://dx.doi.org/10.2307/1907688
[3] Nerlove, M. (1958) Distributed Lags and Demand Analysis for Agricultural and Other Commodities. U.S.D.A Agricultural Handbook No. 141, Washington.
[4] Koyck, L.M. (1954) Distributed Lags and Investment Analysis. North-Holland Publishing Co., Amsterdam.
[5] Klein, L.R. (1958) The Estimation of Distributed Lags. Econometrica, 26, 553-565.
http://dx.doi.org/10.2307/1907516
[6] Fuller, W.A. and Hasza, D.P. (1981) Properties of Predictors from Autoregressive Time Series. Journal of the American Statistical Association, 76, 155-161.
http://dx.doi.org/10.1080/01621459.1981.10477622
[7] Dufour, J. (1985) Unbiasedness of Predictions from Estimated Vector Autoregressions. Econometric Theory, 1, 381-402. http://dx.doi.org/10.1017/S0266466600011270
[8] Chandan, S. and Jones, P. (2005) Asymptotic Bias in the Linear Mixed Effects Model under Non-Ignorable Missing Data Mechanisms. Journal of the Royal Statistical Society: Series B, 67, 167-182.
http://dx.doi.org/10.1111/j.1467-9868.2005.00494.x
[9] Li, B., Nychka, D.W. and Ammann, C.M. (2010) The Value of Multiproxy Reconstruction of Past Climate. Journal of the American Statistical Association, 105, 883-911.
http://dx.doi.org/10.1198/jasa.2010.ap09379
[10] Bunn, D.W. (1979) The Synthesis of Predictive Models in Marketing Research. Journal of Marketing Research, 16, 280-283.
http://dx.doi.org/10.2307/3150692
[11] Diebold, F.X. (1989) Forecast Combination and Encompassing: Reconciling Two Divergent Literatures. International Journal of Forecasting, 5, 589-592.
http://dx.doi.org/10.1016/0169-2070(89)90014-9
[12] Clemen, R.T. (1989) Combining Forecasts: A Review and Annotated Bibliography. International Journal of Forecasting, 5, 559-583.
http://dx.doi.org/10.1016/0169-2070(89)90012-5
[13] Makridakis, S., Anderson, A., Carbone, R., Fildes, R., Hibon, M., Lewandowski, R., Newton, J., Parzen, E. and Winkler, R. (1982) The Accuracy of Extrapolation (Times Series) Methods: Results of a Forecasting Competition. Journal of Forecasting, 1, 111-153.
http://dx.doi.org/10.1002/for.3980010202
[14] Winkler, R.L. (1989) Combining Forecasts: A Philosophical Basis and Some Current Issues. International Journal of Forecasting, 5, 605-609.
http://dx.doi.org/10.1016/0169-2070(89)90018-6
[15] Hendry, D.F. and Mizon, G.E. (1978) Serial Correlation as a Convenient Simplification, Not a Nuisance: A Commentary on a Study of the Demand for Money by the Bank of England. The Economic Journal, 88, 549-563.
http://dx.doi.org/10.2307/2232053
[16] Hendry, D.F. (1976) The Structure of Simultaneous Equations Estimators. Journal of Econometrics, 4, 551-588.
http://dx.doi.org/10.1016/0304-4076(76)90017-8
[17] Mizon, G.E. (1977) Model Selection Procedures. In: Artis, M.J. and Nobay, A.D., Eds., Studies in Modern Economic Analysis, Basil Blackwell, Oxford.
[18] Pindyck, R.S. and Rubinfeld, D.L. (1976) Econometric Models and Economic Forecasts. McGraw-Hill, New York.
[19] Durbin, J. and Watson, G.S. (1950) Testing for Serial Correlation in Least Squares Regression: I. Biometrika, 37, 409-428.
[20] Durbin, J. (1970) Testing for Serial Correlation in Least-Squares Regression When Some of the Regressors Are Lagged Dependent Variables. Econometrica, 38, 410-421.
http://dx.doi.org/10.2307/1909547
[21] Osborn, D.R. (1976) Maximum Likelihood Estimation of Moving Average Processes. Journal of Economic and Social Measurement, 5, 75-87.
[22] Espasa, D. (1977) The Spectral Maximum Likelihood Estimation of Econometric Models with Stationary Errors. 3, Applied Statistics and Economics Series. Vanderhoeck and Ruprecht, Gottingen.
[23] Hammersley, J.M. and Morton, K.W. (1956) A New Monte Carlo Technique: Antithetic Variates. Mathematical Proceedings of the Cambridge Philosophical Society, 52, 449-475.
http://dx.doi.org/10.1017/S0305004100031455
[24] Kleijnen, J.P.C. (1975) Antithetic Variates, Common Random Numbers and Optimal Computer Time Allocation in Simulations. Management Science, 21, 1176-1185.
http://dx.doi.org/10.1287/mnsc.21.10.1176
[25] Ridley, A.D. (1999) Optimal Antithetic Weights for Lognormal Time Series Forecasting. Computers & Operations Research, 26, 189-209.
http://dx.doi.org/10.1016/s0305-0548(98)00058-6
[26] Ridley, A.D. (1995) Combining Global Antithetic Forecasts. International Transactions in Operational Research, 4,387-398.
http://dx.doi.org/10.1111/j.1475-3995.1995.tb00030.x
[27] Ridley, A.D. (1997) Optimal Weights for Combining Antithetic Forecasts. Computers & Industrial Engineering, 2, 371-381.
http://dx.doi.org/10.1016/s0360-8352(96)00296-3
[28] Ridley, A.D. and Ngnepieba, P. (2014) Antithetic Time Series Analysis and the CompanyX Data. Journal of the Royal Statistical Society: Series A, 177, 83-94.
http://dx.doi.org/10.1111/j.1467-985x.2012.12001.x
[29] Ridley, A.D., Ngnepieba, P. and Duke, D. (2013) Parameter Optimization for Combining Lognormal Antithetic Time Series. European Journal of Mathematical Sciences, 2, 235-245.
[30] MATLAB (2008) Application Program Interface Reference, Version 8. The Math Works, Inc.
[31] Hogg, R.V. and Ledolter, J. (2010) Applied Statistics for Engineers and Physical Scientists. 3rd Edition, Prentice Hall, Upper Saddle River, 174.
[32] Box, G.E.P. and Cox, D.R. (1964) An Analysis of Transformations. Journal of the Royal Statistical Society: Series B, 26, 211-252.
[33] Abramowitz, M. and Stegun, I.A. (1964) Handbook of Mathematical Functions. Dover Publications, New York, 260 p.
[34] Bernado, J.M. (1976) Algorithm AS 103: Psi (Digamma) Function. Journal of the Royal Statistical Society: Series C (Applied Statistics), 25, 315-317.
[35] Fuller, W.A. (1996) Introduction to Statistical Times Series. Wiley, New York.