[1] Perlmutter, S., et al. (1997) Measurement of the Cosmological Parameters Ω and Λ from the First Seven Supernovae at z ≥ 0.35. The Astrophysical Journal, 483, 565-581.
http://dx.doi.org/10.1086/304265
[2] Perlmutter, S., et al. (1998) Discovery of Supernovae Explosion at Half the Age of the Universe. Nature, 391, 51-54.
http://dx.doi.org/10.1038/34124
[3] Perlmutter, S., et al. (1999) Measurement of and 42 High-Redshift Supernovae. The Astrophysical Journal, 517, 565-586.
http://dx.doi.org/10.1086/307221
[4] Riess, A.G., et al. (1998) Observational Evidence from Super-Novae for an Accelerating Universe and a Cosmological Constant. The Astrophysical Journal, 116, 1009-1038.
[5] Riess, A.G., et al. (2004) Type Ia Supernova Discoveries at z >1 from the Hubble Space Telescope: Evidence for the Past Deceleration and Constraints on Dark Energy Evolution. The Astrophysical Journal, 607, 665-678.
http://dx.doi.org/10.1086/383612
[6] Caldwell, R.R. and Doran, M. (2004) Cosmic Microwave Background and Supernova Constraints on Quintessence: Concordance Regions and Target Models. Physics Review D, 69, 103517.
http://dx.doi.org/10.1103/PhysRevD.69.103517
[7] Huang, Z.Y., Wang, B. and Abdalla, E. (2006) Holographic Explanation of Wide-Angle Power Correlation Suppression in the Cosmic Microwave Background Radiation. Journal of Cosmology and Astroparticle Physics, 2006.
http://dx.doi.org/10.1088/1475-7516/2006/05/013
[8] Daniel, S.F., Caldwell, R.R., Cooray, A. and Melchiorri, A. (2008) Large Scale Structure as a Probe of Gravitational Slip. Physics Review D, 77, 103513.
http://dx.doi.org/10.1103/PhysRevD.77.103513
[9] Zlatev, I., Wang, L. and Steinhardt, P.J. (1999) Quintessence, Cosmic Coincidence, and the Cosmological Constant. Physical Review Letters, 82, 896-899.
http://dx.doi.org/10.1103/PhysRevLett.82.896
[10] Caldwell, R.R. (2002) A Phantom Menace? Cosmological Consequences of a Dark Energy Component with Super-Negative Equation of State. Physics Letters B, 545, 23-29.
http://dx.doi.org/10.1016/S0370-2693(02)02589-3
[11] Knop, R.A., et al. (2003) New Constraints Ωm, ΩΛ, and w from an Independent Set of 11 High-Redshift Supernovae Observed with the Hubble Space Telescope. The Astrophysical Journal, 598, 102-137.
http://dx.doi.org/10.1086/378560
[12] Tegmark, M., et al. (2004) The Three-Dimensional Power Spectrum of Galaxies from the Sloan Digital Sky Survey. The Astrophysical Journal, 606, 702-740.
http://dx.doi.org/10.1086/382125
[13] Kujat, J., Linn, A.M., Scherrer, R.J. and Weinberg, D.H. (2002) Prospects for Determining the Equations of State of the Dark Energy: What Can Be Learned from Multiple Observables? The Astrophysical Journal, 572, 1-14.
http://dx.doi.org/10.1086/340230
[14] Bartelmann, M., Dolag, K., Perrotta, F., Baccigalupi, C., Moscardini, L., Meneghetti, M. and Tormen, G. (2005) Evolution of Dark-Matter Haloes in a Variety of Dark-Energy Cosmologies. New Astronomy Reviews, 49, 199-203.
http://dx.doi.org/10.1016/j.newar.2005.01.014
[15] Jimenez, R. (2003) The Value of the Equation of State of Dark Energy. New Astronomy Reviews, 47, 761-167.
http://dx.doi.org/10.1016/j.newar.2003.07.004
[16] Das, A., Gupta, S., Saini, T.D. and Kar, S. (2005) Cosmology with Decaying Tachyon Matter. Physical Review D, 72, 043528.
http://dx.doi.org/10.1103/PhysRevD.72.043528
[17] Ratra, B. and Peebles, P.J.E. (1988) Cosmological Consequences of a Rolling Homogeneous Scalar Field. Physical Review D, 37, 3406-3427.
http://dx.doi.org/10.1103/PhysRevD.37.3406
[18] Srivastava, S.K. (2005) Future Universe with w < -1 without Big Smash. Physics Letters B, 619, 1-4.
http://dx.doi.org/10.1016/j.physletb.2005.05.056
[19] Bertolami, O., Sen, A.A., Sen, S. and Silva, P.T. (2004) Latest Supernova Data in the Framework of Generalized Chaplygin Gas Model. Monthly Notices of the Royal Astronomical Society, 353, 329-337.
http://dx.doi.org/10.1111/j.1365-2966.2004.08079.x
[20] Bento, M.C., Bertolami, O. and Sen, A.A. (2002) Generalized Chaplygin Gas, Accelerated Expansion, and Dark-Energy-Matter Unification. Physical Review D, 66, 043507-043512.
http://dx.doi.org/10.1103/PhysRevD.66.043507
[21] Bilic, N., Tupper, G.B. and Viollier, R. (2002) Unification of Dark Matter and Dark Energy: The Inhomogeneous Chaplygin Gas. Physics Letters B, 535, 17-21.
http://dx.doi.org/10.1016/S0370-2693(02)01716-1
[22] Avelino, P.P., et al. (2003) Alternatives to Quintessence Model Building. Physical Review D, 67, 023511-023519.
http://dx.doi.org/10.1103/PhysRevD.67.023511
[23] Akarsu, O. and Kilinc, C.B. (2010) Bianchi Type-III Models with Anisotropic Dark Energy. General Relativity and Gravitation, 42, 763-775.
http://dx.doi.org/10.1007/s10714-009-0878-7
[24] Adhav, K.S. (2011) LRS Bianchi Type-I Universe with Anisotropic Dark Energy in Lyra Geometry. International Journal of Astronomy and Astrophysics, 1, 204-209.
http://dx.doi.org/10.4236/ijaa.2011.14026
[25] Ghate, H.R. and Sontakke, A.S. (2013) Bianchi Type-IX Universe with Anisotropic Dark Energy in Lyra Geometry. Prespacetime Journal, 4, 619-628.
[26] Ghate, H.R. and Sontakke, A.S. (2014) Bianchi Type-IX Magnetized Dark Energy Model in Saez-Ballester Theory of Gravitation. International Journal of Astronomy and Astrophysics, 4, 181-191.
http://dx.doi.org/10.4236/ijaa.2014.41017
[27] Pradhan, A., Jaiswal, R., Jotania, K. and Khare, R.K. (2012) Dark Energy Models with Anisotropic Fluid in Bianchi Type-VI0 Space-Time with Time Dependent Deceleration Parameter. Astrophysics and Space Science, 337, 401-413.
[28] Pradhan, A. (2013) Accelerating Dark Energy Models with Anisotropic Fluid in Bianchi Type-VI0 Space-Time. Research in Astronomy and Astrophysics, 13, 139-158.
http://dx.doi.org/10.1088/1674-4527/13/2/002
[29] Reddy, D.R.K. and Naidu, R.L. (2007) Bianchi Type-IX Cosmic String in a Scalar-Tensor Theory of Gravitation. Astrophysics and Space Science, 312, 99-102.
http://dx.doi.org/10.1007/s10509-007-9657-7
[30] Adhav, K.S., Ugale, M.R. and Raut, V.B. (2010) Bianchi Type-IX Inflationary Universe in General Relativity. International Journal of Theoretical Physics, 49, 1753-1758.
http://dx.doi.org/10.1007/s10509-007-9657-7
[31] Bagora, A. (2012) Tilted Bianchi Type-IX Dust Fluid Cosmological Model in General Relativity. ISRN Astronomy and Astrophysics, 2012, Article ID: 954043.
[32] Purohit, R. and Bagora, A. (2013) Bianchi Type-IX Magnetized Stiff Fluid Cosmological Model. Journal of Physics: Conference Series, 423, Article ID: 012054.
http://dx.doi.org/10.1088/1742-6596/423/1/012054
[33] Gron, Ø. (1986) Transition of Rotating Bianchi Type-IX Cosmological Model into an Inflationary Era. Physical Review D, 33, 1204-1205.
http://dx.doi.org/10.1103/PhysRevD.33.1204
[34] Graham, R. (1991) Supersymmetric Bianchi Type-IX Cosmology. Physical Review Letters, 67, 1381.
http://dx.doi.org/10.1103/PhysRevLett.67.1381
[35] Chakraborty, S. (1991) A Study on Bianchi-IX Cosmological Model. Astrophysics and Space Science, 180, 293-303.
http://dx.doi.org/10.1007/BF00648184
[36] Cheng, A.D.Y., D’Eath, P.D. and Moniz, P.R.L.V. (1994) Quantization of the Bianchi-IX Model in Supergravity with a Cosmological Constant. Physical Review D, 49, 5246.
http://dx.doi.org/10.1103/PhysRevD.49.5246
[37] Bali, R. and Dave, S. (2001) Bianchi Type-IX String Cosmological Model in General Relativity. Pramana, 56, 513-518.
http://dx.doi.org/10.1007/s12043-001-0100-2
[38] Rahman, F., Bag, G., Bhui, B.C. and Das, S. (2003) A Study of Bianchi Type-IX Cosmological Model in Lyra Geometry. Fizika B, 12, 193-200.
[39] Rahman, F., Chakraborty, S., Begum, N., Hossain, M. and Kalam, M. (2003) Bianchi Type-IX String Cosmological Model in Lyra Geometry. Pramana, 60, 1153-1159.
http://dx.doi.org/10.1007/BF02704282
[40] Bali, R. and Yadav, M.K. (2005) Bianchi Type-IX Viscous Fluid Cosmological Model in General Relativity. Pramana, 64, 187-196.
http://dx.doi.org/10.1007/BF02704873
[41] Pradhan, A., Srivastav, S.K. and Yadav, M.K. (2005) Some Homogeneous Bianchi Type-IX Viscous Fluid Cosmological Models with a Varying Λ. Astrophysics and Space Science, 298, 419-432.
http://dx.doi.org/10.1007/s10509-005-5832-x
[42] Wilson-Ewing, E. (2010) Loop Quantum Cosmology of Bianchi Type-IX Models. Physical Review D, 82, 043508.
http://dx.doi.org/10.1103/PhysRevD.82.043508
[43] Tyagi, A. and Chhajed, D. (2012) Homogeneous Anisotropic Bianchi Type-IX Cosmological Model for Perfect Fluid Distribution with Electromagnetic Field. American Journal of Mathematics and Statistics, 2, 19-21.
http://dx.doi.org/10.5923/j.ajms.20120203.01
[44] Ghate, H.R. and Sontakke, A.S. (2013) Binary Mixture of Anisotropic Dark Energy and Perfect Fluid in Bianchi Type-IX Spacetime. Journal of Physics & Mathematical Sciences, 3, 122-131.
[45] Ghate, H.R. and Sontakke, A.S. (2014) Bianchi Type-IX Radiating Cosmological Model in Self-Creation Cosmology. International Journal of Innovative Research in Science, Engineering and Technology, 3, 13820-13825.
[46] Bermann, M.S. (1983) Special Law of Variation for Hubbles Parameters. Il Nuovo Cimento B, 74, 182-186.
http://dx.doi.org/10.1007/BF02721676
[47] Berman, M.S. and Gomide, F.M. (1988) Cosmological Models with Constant Deceleration Parameter. General Relativity and Gravitation, 20, 191-198.
http://dx.doi.org/10.1007/BF00759327
[48] Maharaj, S.D. and Naidu, R. (1993) Solutions to the Field Equations and the Deceleration Parameter. Astrophysics and Space Science, 208, 261-276.
http://dx.doi.org/10.1007/BF00657941
[49] Johri, V.B. and Desikan, K. (1994) Cosmological Models with Constant Deceleration Parameter in Nordtvedt’s Theory. Pramana, 42, 473-481.
http://dx.doi.org/10.1007/BF02847129
[50] Johri, V.B. and Desikan, K. (1994) Cosmological Models with Constant Deceleration Parameter in Brans-Dicke. General Relativity and Gravitation, 26, 1217-1232.
http://dx.doi.org/10.1007/BF02106714
[51] Singh, G.P. and Desikan, K. (1997) A New Class of Cosmological Models in Lyra Geometry. Pramana, 49, 205-212.
http://dx.doi.org/10.1007/BF02845856
[52] Pradhan, A., Yadav, V.K. and Chakrabarty, I. (2001) Bulk Viscous FRW Cosmology in Lyra Geometry. International Journal of Modern Physics D, 10, 339-350.
http://dx.doi.org/10.1142/S0218271801000767
[53] Pradhan, A. and Vishwakarma, A.K. (2002) LRS Bianchi Type-I Cosmological Models in Barber’s Second Self Creation Theory. International Journal of Modern Physics D, 11, 1195-1208.
http://dx.doi.org/10.1142/S0218271802002207
[54] Pradhan, A. and Aotemshi, I. (2002) Bulk Viscous Solutions to the Field Equations and the Deceleration Parameter-Revisited. International Journal of Modern Physics D, 11, 1419-1434.
http://dx.doi.org/10.1142/S0218271802002402
[55] Saha, B. and Rikhvitsky, V. (2006) Bianchi Type-I Universe with Viscous Fluid and a Λ Term: A Qualitative Analysis. Physica D: Nonlinear Phenomena, 219, 168-176.
http://dx.doi.org/10.1016/j.physd.2006.06.003
[56] Saha, B. (2006) Anisotropic Cosmological Models with a Perfect Fluid and a Λ Term. Astrophysics and Space Science, 302, 83-91.
http://dx.doi.org/10.1007/s10509-005-9008-5
[57] Singh, C.P. and Kumar, S. (2006) Bianchi Type-II Cosmological Models with Constant Deceleration Parameter. International Journal of Modern Physics D, 15, 419.
http://dx.doi.org/10.1142/S0218271806007754
[58] Singh, C.P. and Kumar, S. (2007) Bianchi Type-II Space Times with Constant Deceleration Parameter in Self-Creation Cosmology. Astrophysics and Space Science, 310, 31-39.
http://dx.doi.org/10.1007/s10509-007-9411-1
[59] Singh, C.P. (2007) Bianchi Type-II Inflationary Models with Constant Deceleration Parameter in General Relativity. Pramana: Physics and Astronomy, 68, 707-720.
[60] Singh, T. and Chaubey, R. (2006) Bianchi Type-V Model with a Perfect Fluid and Λ Term. Pramana, 67, 415-428.
[61] Singh, T. and Chaubey, R. (2007) Bianchi Type-V Universe with a Viscous Fluid and Λ Term. Pramana, 68, 721-734.
[62] Reddy, D.R.K., Naidu, R.L. and Rao, V.U.M. (2007) A Cosmological Model with Negative Constant Deceleration Parameter in Brans-Dicke Theory. International Journal of Theoretical Physics, 46, 1443-1448.
http://dx.doi.org/10.1007/s10773-006-9283-0
[63] Reddy, D.R.K., Naidu, R.L. and Adhav, K.S. (2007) A Cosmological Model with Negative Constant Deceleration Parameter in Scale-Covariant Theory of Gravitation. Astrophysics and Space Science, 307, 365-367.
[64] Zeyauddin, M. and Ram, S. (2009) Bianchi Type-V Imperfect Fluid Cosmological Models with Heat Flow. Fizika B, 18, 87-98.
[65] Singh, J.P. and Baghel, P.S. (2009) Bianchi Type-V Cosmological Models with Constant Deceleration Parameter in General Relativity. International Journal of Theoretical Physics, 48, 449-462.
http://dx.doi.org/10.1007/s10773-008-9820-0
[66] Pradhan, A. and Jotania, K. (2010) Some Exact Bianchi Type-V Perfect Fluid Cosmological Models with Heat Flow and Decaying Vacuum Energy Density Λ: Expressions for Some Observable Quantities. International Journal of Theoretical Physics, 49, 1719-1738.
http://dx.doi.org/10.1007/s10773-010-0352-z
[67] Akarsu, O. and Kilinc, C.B. (2010) LRS Bianchi Type-I models with Anisotropic Dark Energy and Constant Deceleration Parameter. General Relativity and Gravitation, 42, 119-140.
http://dx.doi.org/10.1007/s10714-009-0821-y
[68] Pradhan, A. and Singh, A.K. (2011) Anisotropic Bianchi Type-I String Cosmological Models in Normal Gauge for Lyra’s Manifold with Constant Deceleration Parameter. International Journal of Theoretical Physics, 50, 916-933.
http://dx.doi.org/10.1007/s10773-010-0636-3
[69] Pradhan, A., Amirhaschi, H. and Saha, B. (2011) Bianchi Type-I Anisotropic Dark Energy Model with Constant Deceleration Parameter. International Journal of Theoretical Physics, 50, 2923-2938.
http://dx.doi.org/10.1007/s10773-011-0793-z
[70] Ghate, H.R. and Sontakke, A.S. (2013) Bianchi Type-IX Dark Energy Model in Brans-Dicke Theory of Gravitation. Prespacetime Journal, 4, 366-376.
[71] Ghate, H.R. and Sontakke, A.S. (2014) Anisotropic Dark Energy Model with Constant Deceleration Parameter in Bianchi Type-IX Space-Times. Mathematical Sciences International Research Journal, 3, 46-53.
[72] Riess, A.G., Nugent, P.E., Gilliland, R.L., Schmidt, B.P., Tonry, J., Dickinson, M., Thompson, R.I., Budavári, T., Casertano, S., Evans, A.S., Filippenko, A.V., Livio, M., Sanders, D.B., Shapley, A.E., Spinrad, H., Steidel, C.C., Stern, D., Surace, J. and Veilleux, S. (2001) The Farthest Known Supernova: Support for an Accelerating Universe and a Glimpse of the Epoch of Deceleration. The Astrophysical Journal, 560, 49-71.
http://dx.doi.org/10.1086/322348
[73] Amendola, L. (2003) Acceleration at z > 1? Monthly Notices of the Royal Astronomical Society, 342, 221-226.
http://dx.doi.org/10.1046/j.1365-8711.2003.06540.x
[74] Padmanabhan, T. and Choudhury, T.R. (2003) A Theoretician’s Analysis of the Supernova Data and the Limitations in Determining the Nature of Dark Energy. Monthly Notices of the Royal Astronomical Society, 344, 823-834.
http://dx.doi.org/10.1046/j.1365-8711.2003.06873.x
[75] Lima, M., Cunha, C.E., Oyaizu, H., Frieman, J., Lin, H. and Sheldon, E.S. (2008) Estimating the Redshift Distribution of Faint Galaxy Samples. Monthly Notices of the Royal Astronomical Society, 390, 118-130.
http://dx.doi.org/10.1111/j.1365-2966.2008.13510.x
[76] Pradhan, A., Shahi, J.P. and Singh, C.B. (2006) Cosmological Models of Universe with Variable Deceleration Parameter in Lyra’s Manifold. Brazilian Journal of Physics, 36, 1227-1231.
http://dx.doi.org/10.1590/S0103-97332006000700020
[77] Yadav, A.K. (2011) Some LRS Bianchi Type-I String Cosmological Models with Variable Deceleration Parameter. Anisotropic Models of Accelerating Universe, 80-98. arXiv:1009.3867v3 [gr-qc]
[78] Tripathi, S.K., Nigam, S.K., Kumar, S. and Sharma, P.K. (2012) Bianchi Type-V Universe with Variable Deceleration Parameter in General Relativity. International Journal of Physics and Mathematical Sciences, 2, 53-57.
[79] Chawla, C., Mishra, R.K. and Pradhan, A. (2013) Anisotropic Bianchi-I Cosmological Model in String Cosmology with Variable Deceleration Parameter. Romanian Journal of Physics, 58, 1000-1013.
[80] Akarsu, O. and Dereli, T. (2011) Cosmological Models with Linearly Varying Deceleration Parameter. International Journal of Theoretical Physics, 51, 612-621.
http://dx.doi.org/10.1007/s10773-011-0941-5
[81] Adhav, K.S. (2011) Bianchi Type-V Cosmological Model with Linearly Varying Deceleration Parameter. International Journal of Mathematical Archive, 2, 2149-2156.
http://dx.doi.org/10.1140/epjp/i2011-11122-9
[82] Adhav, K.S. (2011) LRS Bianchi Type-I Cosmological Model with Linearly Varying Deceleration Parameter. The European Physical Journal Plus, 126, 122-127.
http://dx.doi.org/10.1140/epjp/i2011-11122-9
[83] Singh, P., Singh, J.P. and Bali, R. (2013) Linearly Varying Deceleration Parameter in Viscous Bianchi Type-I Universe. Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 83, 129-136.
http://dx.doi.org/10.1007/s40010-012-0054-4
[84] Akarsu, O., Dereli, T., Kumar, S. and Xu, L. (2014) Probing Kinematics and Fate of the Universe with Linearly Time-Varying Deceleration Parameter. The European Physical Journal Plus, 129, 22-36.
http://dx.doi.org/10.1140/epjp/i2014-14022-6
[85] Singha, A.K. and Debnath, U. (2008) Acceleration Universe with a Special Form of Deceleration Parameter. International Journal of Theoretical Physics, 48, 351-356.
http://dx.doi.org/10.1007/s10773-008-9807-x
[86] Adhav, K.S., Bansod, A.S. and Ajmire, H.G. (2013) Early Decelerating and Late Time Accelerating Anisotropic Cosmological Models with Dynamical EoS Parameter. Astrophysics and Space Science, 345, 405-413.
http://dx.doi.org/10.1007/s10509-013-1399-0
[87] Adhav, K.S., Wankhade, R.P. and Bansod, A.S. (2013) Bianchi Type-III Universe with Anisotropic Dark Energy and Special Form of Deceleration Parameter. International Journal of Innovative Research in Science, Engineering and Technology, 2, 1656-1665.
[88] Adhav, K.S., Wankhade, R.P. and Bansod, A.S. (2013) LRS Bianchi Type-I Cosmological Model with Anisotropic Dark Energy and Special Form of Deceleration Parameter. Journal of Modern Physics, 4, 1037-1040.
http://dx.doi.org/10.4236/jmp.2013.48139
[89] Chirde, V.R. and Shekh, S.H. (2014) Cosmological Models with Anisotropic Dark Energy in Lyra Geometry. International Journal of Advanced Research, 2, 1103-1114.
[90] Saha, B., Amirhashchi, H. and Pradhan, A. (2012) Two-Fluid Scenario for Dark Energy Models in an FRW Universe-Revisited. Astrophysics and Space Science, 342, 257-267.
http://dx.doi.org/10.1007/s10509-012-1155-x
[91] Pradhan, A. and Amirhashchi, H. (2011) Accelerating Dark Energy Models in Bianchi Type-V Spacetime. Modern Physics Letters A, 26, 2261-2275.
http://dx.doi.org/10.1142/S0217732311036620
[92] Yadav, A.K. (2012) Bianchi-V String Cosmological Model and Late Time Acceleration. Research in Astronomy and Astrophysics, 12, 1467-1474.
http://dx.doi.org/10.1088/1674-4527/12/11/002
[93] Yadav, A.K. (2012) Cosmological Constant Dominated Transit Universe from the Early Deceleration Phase to the Current Acceleration Phase in Bianchi-V Spacetime. Chinese Physics Letters, 29, 079801.
http://dx.doi.org/10.1088/0256-307X/29/7/079801
[94] Pradhan, A., Singh, A.K. and Chouhan, D.S. (2013) Accelerating Bianchi Type-V Cosmology with Perfect Fluid and Heat Flow in Sáez-Ballester Theory. International Journal of Theoretical Physics, 52, 266-278.
http://dx.doi.org/10.1007/s10773-012-1329-x
[95] Rahman, Md.A. and Ansari, M. (2013) Anisotropic Bianchi Type-III Dark Energy Model with Time-Dependent Deceleration Parameter in Sáez-Ballester Theory. IOSR Journal of Applied Physics, 4, 79-84.
http://dx.doi.org/10.9790/4861-0457984
[96] Thorne, K.S. (1967) Primordial Element Formation, Primordial Magnetic Fields, and the Isotropy of the Universe. Astrophysical Journal, 148, 51.
http://dx.doi.org/10.1086/149127
[97] Kantowski, R. and Sachs, R.K. (1966) Some Spatially Homogeneous Anisotropic Relativistic Cosmological Models. Journal of Mathematical Physics, 7, 443.
http://dx.doi.org/10.1063/1.1704952
[98] Kristian, J. and Sachs, R.K. (1966) Observations in Cosmology. Astrophysical Journal, 143, 379.
http://dx.doi.org/10.1086/148522
[99] Collins, C.B., Glass, E.N. and Wilkinson, D.A. (1980) Exact Spatially Homogeneous Cosmologies. General Relativity and Gravitation, 12, 805-823.
http://dx.doi.org/10.1007/BF00763057
[100] MacCallum, M.A.H. (1971) A Class of Homogeneous Cosmological Models III: Asymptotic Behaviour. Communications in Mathematical Physics, 20, 57-84.
http://dx.doi.org/10.1007/BF01646733
[101] Schmidt, B.P., Suntzeff, N.B., Phillips, M.M., Schommer, R.A., Clocchiatti, A., Kirshner, R.P., Garnavich, P., Challis, P., Leibundgut, B., Spyromilio, J., Riess, A.G., Filippenko, A.V., Hamuy, M., Smith, R.C., Hogan, C., Stubbs, C., Diercks, A., Reiss, D., Gilliland, R., Tonry, J., Maza, J., Dressler, A., Walsh, J. and Ciardullo, R. (1998) The High-Z Supernova Search: Measuring Cosmic Deceleration and Global Curvature of the Universe Using Type-Ia Supernovae. The Astrophysical Journal, 507, 46-63.
http://dx.doi.org/10.1086/306308
[102] Garnavich, P.M., Jha, S., Challis, P., Clocchiatti, A., Diercks, A., Filippenko, A.V., Gilliland, R.L., Hogan, C.J., Kirshner, R.P., Leibundgut, B., Phillips, M.M., Reiss, D., Riess, A.G., Schmidt, B.P., Schommer, R.A., Smith, R.C., Spyromilio, J., Stubbs, C., Suntzeff, N.B., Tonry, J. and Carroll, S.M. (1998) Supernova Limits on the Cosmic Equation of State. The Astrophysical Journal, 509, 74-79.
http://dx.doi.org/10.1086/306495