JST  Vol.5 No.4 , December 2015
Review of Turn around Point Long Period Fiber Gratings
ABSTRACT
Long period fiber gratings are emerging as a potential candidate in the list of surrounding refractive index optical fiber sensors. Their sensitivity can be enhanced greatly if the grating period, fiber dimensions and surrounding refractive index are optimized in a way to operate at a point called turn around point on phase matching curves of these gratings. Turn around point LPFGs are well known for their ultrahigh sensitivity to external parameters. Potential of operating LPFG at or near turn around point has been investigated by many researchers in various applications including physical parameter sensing, adulteration detection, radiation dose, etc. Since TAP LPFGs are in investigation phase therefore a lot of rigorous & efficient work in finding techniques for optimizing their potential as sensor in chemical, biochemical, structural health monitoring is still to be carried out. A brief review of work carried out in this domain till now is presented here and key findings from literature review are highlighted.

Cite this paper
Gambhir, M. and Gupta, S. (2015) Review of Turn around Point Long Period Fiber Gratings. Journal of Sensor Technology, 5, 81-89. doi: 10.4236/jst.2015.54009.
References
[1]   Fidanboylu, K. and Efendioglu, H.S. (2009) Fiber Optic Sensors and Their Applications. 5th International Advanced Technologies Symposium (IATS’09), Karabuk, 13-15 May 2009, 1-6.

[2]   Hill, K.O. and Meltz, G. (1997) Fiber Bragg Grating Technology Fundamentals and Overview. Journal of Lightwave Technology, 15, 1263-1276. http://dx.doi.org/10.1109/50.618320

[3]   Miguel, J., Higuera, L. and Cobo, L.R. (2015) Fiber Optic Sensors in Structural Health Monitoring. Journal of Light- wave Technology, 29, 150-164.

[4]   James, S.W. and Tatam, R.P. (2003) Optical Fibre Long-Period Grating Sensors: Characteristics and Application. Measurement Science Technology, 14, R49-R61.
http://dx.doi.org/10.1088/0957-0233/14/5/201

[5]   Patrick, H.J., Kersey, A.D. and Bucholtz, F. (1998) Analysis of the Response of Long period Fibre Gratings to External Index of Refraction. Journal of Lightwave Technology, 16, 1606-1612.
http://dx.doi.org/10.1109/50.712243

[6]   Akki, J.F., Lalasangi, A.S., Raika, P.U., Srinivas, T., Laxmeshwar, L.S. and Raikar, U.S. (2013) Core-Cladding Mode Resonances of Long Period Fiber Grating in Concentration Sensor. Journal of Applied Physics, 4, 41-46.

[7]   Taghipour, A., Rostami, A., Bahrami, M., Baghban, H. and Dolatyari, M. (2014) Comparative Study between LPFG- and FBG-Based Bending Sensors. Optics Communications, 312, 99-105.
http://dx.doi.org/10.1016/j.optcom.2013.09.020

[8]   Shu, X.W., Zhang, L. and Bennion, I. (2002) Sensitivity Characteristics of Long-Period Fiber Gratings. Journal of Lightwave Technology, 20, 255-266. http://dx.doi.org/10.1109/50.983240

[9]   Besley, J.A., Wang, T. and Reekie, L. (2003) Fiber Cladding Mode Sensitivity Characterization for long-Period Gratings. Journal of Lightwave Technology, 21, 848-853.
http://dx.doi.org/10.1109/JLT.2003.809577

[10]   Hochreiner, H., Cada, M. and Wentzell, P.D. (2008) Modeling the Response of a Long-Period Fiber Grating to Ambient Refractive Index Change in Chemical Sensing Applications. Journal of Lightwave Technology, 26, 1986-1992. http://dx.doi.org/10.1109/JLT.2007.912022

[11]   Koyamada, Y. (2001) Numerical Analysis of Core-Mode to Radiation-Mode Coupling in Long-Period Fiber Gratings. IEEE Photonics Technology Letters, 13, 308-310. http://dx.doi.org/10.1109/68.917834

[12]   Kher, S., Chaubey, S., Kishore, J. and Oak, S.M. (2013) Detection of Fuel Adulteration with High Sensitivity Using Turnaround Point Long Period Fiber Gratings in B/Ge Doped Fibers. IEEE Sensors Journal, 13, 4482-4486. http://dx.doi.org/10.1109/JSEN.2013.2270312

[13]   Kashyap, R. (2009) Fiber Bragg Gratings. Elsevier.

[14]   Biswas, P., Basumallick, N., Bandyopadhyay, S., Dasgupta, K., Ghosh, A. and Bandyopadhyay, S. (2015) Sensitivity Enhancement of Turn-Around-Point Long Period Gratings by Tuning Initial Coupling Condition. IEEE Sensors Journal, 15, 1240-1245. http://dx.doi.org/10.1109/JSEN.2014.2361166

[15]   Chaubey, S., Kher, S., Kishore, J. and Oak, S.M. (2014) CO2 Laser-Inscribed Low-Cost, Shortest-Period Long-Period Fiber Grating in B-Ge Co-Doped Fiber for High-Sensitivity Strain Measurement. Pramana, 82, 373-377. http://dx.doi.org/10.1007/s12043-014-0692-y

[16]   Chaubey, S., Kher, S. and Oak, S.M. (2011) Radiation and Taper Tuning of Long Period Grating for High Sensitivity Strain Measurement. 7th Workshop on Fiber and Optical Passive Components (WFOPC), Montreal, 13-15 July 2011, 1-4. http://dx.doi.org/10.1109/wfopc.2011.6089670

[17]   Lan, X., Han, Q., Huang, J., Wang, H., Gao, Z., Kaur, A. and Xiao, H. (2013) Turn-Around Point Long-Period Fiber Grating Fabricated by CO2 Laser for Refractive Index Sensing. Sensors and Actuators B: Chemical, 177, 1149-1155. http://dx.doi.org/10.1016/j.snb.2012.12.006

[18]   Lan, X., Han, Q., Wei, T., Huang, J. and Xiao, H. (2011) Turn-Around Point Long-Period Fiber Gratings Fabricated by CO2 Laser Point-by-Point Irradiations. IEEE Photonics Technology Letters, 23, 1664-1666.
http://dx.doi.org/10.1109/LPT.2011.2166256

[19]   Kher, S., Chaubey, S., Kashyap, R. and Oak, S.M. (2012) Turn-Around Point Long-Period Fiber Gratings (TAP-LPGs) as High-Radiation-Dose Sensors. IEEE Photonics Technology Letters, 24, 742-744.
http://dx.doi.org/10.1109/LPT.2012.2187637

[20]   Mishra, V., Jain, S.C., Singh, N., Poddar, G.C. and Kapur, P. (2008) Fuel Adulteration Detection Using Long Period Fiber Grating Sensor Technology. Indian Journal of Pure & Applied Physics, 46, 106-110.

[21]   Iadicicco, A., Paladino, D., Pilla, P., Campopiano, S., Cutolo, A. and Cusano, A. (2012) Ch. 14: Long Period Gratings in New Generation Optical Fibers. In: Yasin, M., Harun, S.W. and Arof, H., Eds., Recent Progress in Optical Fiber Research, InTech, 291-326. http://dx.doi.org/10.5772/27910

[22]   Chiavaioli, F., Biswas, P., Trono, C., Bandyopadhyay, S., Giannetti, A., Tombelli, S., Basumallick, N., Dasgupta, K. and Baldini, F. (2014) Towards Sensitive Label-Free Immunosensing by Means of Turn-Around Point Long Period Fiber Gratings. Biosensors and Bioelectronics, 60, 305-310.
http://dx.doi.org/10.1016/j.bios.2014.04.042

[23]   Garg, R., Tripathi, S.M., Thyagarajan, K. and Bock, W.J. (2013) Long Period Fiber Grating Based Temperature- Compensated High Performance Sensor for Bio-Chemical Sensing Applications. Sensors and Actuators B: Chemical, 176, 1121-1127. http://dx.doi.org/10.1016/j.snb.2012.08.059

[24]   Allsop, T., Kalli, K., Zhou, K., Lai, Y., Smith, G., Dubov, M., Webb, D.J. and Bennion, I. (2008) Long Period Gratings Written into a Photonic Crystal Fiber by a Femtosecond Laser as Directional Bend Sensors. Optics Communications, 281, 5092-5096. http://dx.doi.org/10.1016/j.optcom.2008.07.001

[25]   Kanka, J. (2012) Design of Turn-Around-Point Long-Period Gratings in Ge-Doped Photonic Crystal Fibers for Evanescent Sensing. Proceedings of SPIE, 8426, 34-40. http://dx.doi.org/10.1117/12.923039

[26]   Kanka, J. (2013) Design of Turn-Around-Point Long-Period Gratings in a Photonic Crystal Fiber for Refractometry of Gases. Sensors and Actuators B: Chemical, 182, 16-24.
http://dx.doi.org/10.1016/j.snb.2013.02.048

[27]   Shu, X., Zhu, X., Wang, Q., Jiang, S., Shi, W. and Huang, Z. (1999) Dual Resonant Peaks of LP Cladding Mode in Long-Period Gratings. Electronics Letters, 35, 649-651. http://dx.doi.org/10.1049/el:19990442

[28]   Smietana, M., Koba, M., Mikulic, P. and Bock, W.J. (2014) Tuning Properties of Long Period Gratings by Plasma Post Processing of Their Diamond Like Carbon Nano-Overlays. Measurememt Science and Technology, 25, Article ID: 114001. http://dx.doi.org/10.1088/0957-0233/25/11/114001

[29]   Ishaq, I.M., Quintela, A., James, S.W., Ashwell, G.J., LopezHiguera, J.M. and Tatamm, R.P. (2005) Modification of the Refractive Index Response of Long Period Gratings Using Thin Film Overlays. Sensors and Actuators B: Chemical, 107, 738-741. http://dx.doi.org/10.1016/j.snb.2004.12.004

[30]   Wang, Z., Heflin, J.R., Stolen, R.H. and Ramachandran, S. (2005) Analysis of Optical Response of Long Period Fiber Gratings to Nm-Thick Thin-Film Coatings. Optics Express, 13, 2808-2813.
http://dx.doi.org/10.1364/OPEX.13.002808

[31]   Villar, I.D., Matías, I.R. and Arregui, F.J. (2005) Optimization of Sensitivity in Long Period Fiber Gratings with Overlay Deposition. Optics Express, 13, 27-69. http://dx.doi.org/10.1364/opex.13.000056

[32]   Cusano, A., Iadicicco, A., Pilla, P., Contessa, L., Campopiano, S. and Cutolo, A. (2006) Mode Transition in High Refractive Index Coated Long Period Gratings. Optics Express, 14, 19-34.
http://dx.doi.org/10.1364/OPEX.14.000019

[33]   Yang, J., Yang, L., Xu, C.Q. and Li, Y. (2007) Optimization of Cladding-Structure-Modified Long-Period-Grating Refractive-Index Sensors. Journal of Lightwave Technology, 25, 372-380.
http://dx.doi.org/10.1109/JLT.2006.886720

[34]   Korposh, S., Selyanchyn, R., Yasukochi, W., Lee, S.W., James, S.W. and Tatam, R.P. (2012) Optical Fiber Long Period Grating with a Nanoporous Coating Formed from Silica Nanoparticles for Ammonia Sensing in Water. Materials Chemistry and Physics, 133, 784-792.
http://dx.doi.org/10.1016/j.matchemphys.2012.01.094

[35]   Villar, I.D. (2015) Ultrahigh-Sensitivity Sensors Based on Thin-Film Coated Long Period Gratings with Reduced Diameter, in Transition Mode and near the Dispersion Turning Point. Optics Express, 23, 8389-8398. http://dx.doi.org/10.1364/OE.23.008389

[36]   Simões, E., Abe, I., Oliveira, J., Frazão, O., Caldas, P. and Pinto, J.L. (2011) Characterization of Optical Fiber Long Period Grating Refractometer with Nanocoating. Sensors and Actuators B: Chemical, 153, 335-339. http://dx.doi.org/10.1016/j.snb.2010.10.033

[37]   James, S.W., Korposh, S., Lee, S.W. and Tatam, R.P. (2014) A Long Period Grating-Based Chemical Sensor Insensitive to the Influence of Interfering Parameters. Optics Express, 22, 8012-8023.
http://dx.doi.org/10.1364/OE.22.008012

[38]   Tripathi, S.M., Bock, W.J., Mikulic, P., Chinnappan, R., Ng, A., Tolba, M. and Zourob, M. (2012) Long Period Grating Based Biosensor for the Detection of Escherichia coli Bacteria. Biosensors and Bioelectronics, 35, 308-312. http://dx.doi.org/10.1016/j.bios.2012.03.006

[39]   Zou, F., Liu, Y., Deng, C., Dong, Y., Zhu, S. and Wang, T. (2015) Refractive Index Sensitivity of Nano-Film Coated Long-Period Fiber Gratings. Optics Express, 23, 1114-1124.
http://dx.doi.org/10.1364/OE.23.001114

[40]   Yang, R.Z., Dong, W.F., Meng, X., Zhang, X.L., Sun, Y.L., Hao, Y.W., Guo, X.C., Zhang, W.Y., Yu, Y.S., Song, J.F., Qi, Z.M. and Sun, H.B. (2012) Nanoporous TiO2/Polyion Thin-Film-Coated Long-Period Grating Sensors for the Direct Measurement of Low-Molecular-Weight Analytes. Langmuir, 28, 8814-8821.
http://dx.doi.org/10.1021/la301445h

[41]   Korposh, S., James, S., Tatam, R. and Lee, S.W. (2013) Chapter 4: Optical Fiber Long-Period Gratings Functionalised with Nano- Assembled Thin Films: Approaches to Chemical Sensing. In: Cuadrado-Laborde, C., Ed., Current Trends in Short- and Long-Period Fiber Gratings, InTech, 63-86.

[42]   Wei, X.T., Wei, T., Xiao, H. and Lin, Y.S. (2011) Terbium Doped Strontium Cerate Enabled Long Period Fiber Gratings for High Temperature Sensing of Hydrogen. Sensors and Actuators B: Chemical, 152, 214-219. http://dx.doi.org/10.1016/j.snb.2010.12.009

[43]   Chen, H. and Gu, Z. (2014) Filtering Characteristics of Film-Coated Long Period Gratings Operating at the Phase Matching Turning Point. Optik, 125, 6003-6009. http://dx.doi.org/10.1016/j.ijleo.2014.07.060

 
 
Top