[1] Xu, X., Subbarao, K., Cox, N.J., Guo, Y. (1999) Genetic characterization of the pathogenic influenza A/Goose/ Guangdong/1/96 (H5N1) virus: similarity of its hemagglutinin gene to those of H5N1 viruses from the 1997 outbreaks in Hong Kong. Virology, 261, 15-19. doi:10.1006/viro.1999.9820
[2] Claas, E.C.J., Osterhaus, A.D.M.E., van Beek, R., de Jong, J.C., Rimmelzwaan, G.F., et al. (1998) Human influenza a H5N1 virus related to a highly pathogenic avian influenza virus. The Lancet, 351, 472-477. doi:10.1016/S0140-6736(97)11212-0
[3] www.usda.gov/documents/wildbirdstrategicplanpdf.pdf
[4] Bi, Y., Fu, G., Chen, J., Peng, J., Sun, Y., Wang, J., et al. (2010) Novel swine influenza virus reassortants in pigs, China. Emerging Infectious Diseases. http://www.cdc. gov/EID/content/16/7/1162.htm
[5] Shinya, K., Ebina, M., Yamada, S., Ono, M., Kasai, N. and Kawaoka, Y. (2006) Avian flu: Influenza virus receptors in the human airway. Nature, 440, 435-436. doi:10.1038/440435a
[6] Skehel, J.J. and Wiley, D.C. (2000) Receptor binding and membrane fusion in virus entry: The influenza hemagglutinin. Annual Review of Biochemistry, 69, 531-569. doi:10.1146/annurev.biochem.69.1.531
[7] Glaser, L., Stevens, J., Zamarin, D., Wilson, I.A., García-Sastre, A., Tumpey, T.M., Basler, C.F., Taubenberger, J.K. and Palese, P. (2005) A single amino acid substitution in 1918 influenza virus hemagglutinin changes receptor binding specificity. Journal of Virology, 79, 11533-11536. doi:10.1128/JVI.79.17.11533-11536.2005
[8] Li, M. and Wang, B. (2006) Computational studies of H5N1 hemagglutinin binding with SA-alpha-2, 3-Gal and SA-alpha-2, 6-Gal. Biochemical and Biophysical Research Communications, 347, 662-668. doi:10.1016/j.bbrc.2006.06.179
[9] Hu, W. (2010) Identification of highly conserved domains in gemagglutinin associated with the receptor binding specificity of influenza viruses: 2009 H1N1, avian H5N1, and swine H1N2. Journal of Biomedical Science and Engineering, 3, 114-123. doi:10.4236/jbise.2010.32017
[10] Hu, W. (2010) Quantifying the effects of mutations on receptor binding specificity of influenza viruses. Journal of Biomedical Science and Engineering, 3, 227-240.
[11] Hu, W. (2010) Highly conserved domains in hemagglutinin of influenza viruses characterizing dual receptor binding. Natural Science, 2, 1005-1014. doi:10.4236/ns.2009.29123
[12] Veljko, V., Henry, L.N., Sanja, G., Nevena, V., Vladimir, P. and Claude, P.M. (2009) Identification of hemagglutinin structural domain and polymorphisms which may modulate swine H1N1 interactions with human receptor. BMC Structural Biology, 9, 62. doi:10.1186/1472-6807-9-62
[13] Veljkovic, V. Veljkovic, N., Muller, C.P., Müller, S., Glisic, S., Perovic, V. and K?hler, H. (2009) Characterization of conserved properties of hemagglutinin of H5N1 and human influenza viruses: Possible consequences for therapy and infection control. BMC Structural Biology, 7, 9-21.
[14] Hu, W. (2009) Analysis of correlated mutations, stalk motifs, and phylogenetic relationship of the 2009 influenza a virus neuraminidase sequences. Journal of Biomedical Science and Engineering, 2, 550-558.
[15] Hu, W. (2010) The interaction between the 2009 H1N1 influenza a hemagglutinin and neuraminidase: Mutations, co-mutations, and the NA stalk motifs. Journal of Biomedical Science and Engineering, 3, 1-12. doi:10.4236/jbise.2010.31001
[16] Chen, G.-W., Chang, S.-C., Mok, C.-K., Lo, Y.-L., Kung, Y.-N., et al. (2006) Genomic signatures of human versus avian influenza a viruses. Emerging Infectious Diseases, 12, 1353-1360.
[17] Chen, G.-W. and Shih, S.-R. (2009) Genomic signatures of influenza a pandemic (H1N1) 2009, virus. Emerging Infectious Diseases, 15, 1897-1903.
[18] Pan, C., Cheung, B., Tan, S., Li, C., Li, L., et al. (2010) Genomic signature and mutation trend analysis of pandemic (H1N1) 2009, influenza A virus. PLoS ONE, 5, Article ID e9549. doi:10.1371/journal.pone.0009549
[19] Miotto, O., Heiny, A., Tan, T.W., August, J.T. and Brusic, V. (2008) Identification of human-to-human transmissibility factors in PB2 proteins of influenza A by large-scale mutual information analysis. BMC Bioinformatics, 9, S18. doi:10.1186/1471-2105-9-S1-S18
[20] Miotto, O., Heiny, A.T., Albrecht, R., García-Sastre, A., Tan, T.W., August, J.T. and Brusic, V. (2010) Complete-proteome mapping of human influenza A adaptive mutations: Implications for human transmissibility of zoonotic strains. PLoS ONE, 5, Article ID e9025. doi:10.1371/journal.pone.0009025
[21] Finkelstein, D.B., Mukatira, S., Mehta, P.K., Obenauer, J.C., Su, X., Webster, R.G. and Naeve, C.W. (2007) Persistent host markers in pandemic and H5N1 influenza viruses. Journal of Virology, 81, 10292-10299. doi:10.1128/JVI.00921-07
[22] Allen, J.E., Gardner, S.N., Vitalis, E.A. and Slezak, T.R. (2009) Conserved amino acid markers from past influenza pandemic strains. BMC Microbiology, 9, 77. doi:10.1186/1471-2180-9-77
[23] Breiman, L. (2001) Random forests. Machine Learning, 45, 5-32. doi:10.1023/A:1010933404324
[24] Hu, W. (2010) Novel host markers in the 2009 pandemic H1N1 influenza A virus. Journal of Biomedical Science and Engineering, 3, 584-601.
[25] Hu, W. (2010) Nucleotide host markers in the influenza A viruses. Journal of Biomedical Science and Engineering, 3, 684-699.
[26] Katoh, K., Kuma, K., Toh, H. and Miyata, T. (2005) MAFFT version 5: Improvement in accuracy of multiple sequence alignment. Nucleic Acids Research, 33, 511-518. doi:10.1093/nar/gki198
[27] Cosic, I. (1997) The Resonant Recognition Model of Macromolecular Bioreactivity, Theory and Application. Birkhauser Verlag, Berlin.
[28] Hu, W. (2011) Receptor binding specificity and origin of 2009 H1N1 pandemic influenza virus. Natural Science, 3, 234-248.
[29] Cover, T.A. and Thomas, J.A. (1991) Elements of Information Theory. John Wiley and Sons, New York. doi:10.1002/0471200611
[30] MacKay, D. (2003) Information Theory, Inference, and Learning Algorithms. Cambridge University Press, Cambridge.
[31] Bogs, J., Veits, J., Gohrbandt, S., Hundt, J., Stech, O., et al. (2010) Highly pathogenic H5N1 influenza viruses carry virulence determinants beyond the polybasic hemagglutinin cleavage site. PLoS ONE, 5, Article ID e11826. doi:10.1371/journal.pone.0011826
[32] Gohrbandt, S., Veits, J., Hundt, J., Bogs, J., Breithaupt, A., Teifke, J.P., Weber, S., Mettenleiter, T.C. and Stech, J. (2011) Amino acids adjacent to the haemagglutinin cleavage site are relevant for virulence of avian influenza viruses of subtype H5. Journal of General Virology, 92, 51-59. doi:10.1099/vir.0.023887-0
[33] Stevens, J., Blixt, O., Tumpey, T.M., Taubenberger, J.K., Paulson, J.C. and Wilson, I.A. (2006) Structure and receptor specificity of the hemagglutinin from an H5N1 influenza virus. Science, 312, 404-410. doi:10.1126/science.1124513
[34] Wang, W., Lu, B., Zhou, H., Suguitan, A.L. Jr., Cheng, X., Subbarao, K., Kemble, G. and Jin, H. (2010) Glycosylation at 158N of the hemagglutinin protein and receptor binding specificity synergistically affect the antigenicity and immunogenicity of a live attenuated H5N1 A/Vietnam/ 1203/2004 vaccine virus in ferrets. Journal of Virology, 84, 6570-6577. doi:10.1128/JVI.00221-10
[35] Auewarakul, P., Suptawiwat, O., Kongchanagul, A., et al. (2007) An avian influenza H5N1 virus that binds to a human-type receptor. Journal of Virology, 81, 9950-9955. doi:10.1128/JVI.00468-07
[36] Yamada, S., Suzuki, Y., Suzuki, T., Le, M.Q., Nidom, C.A., et al. (2006) Haemagglutinin mutations responsible for the binding of H5N1 influenza A viruses to humantype receptors. Nature, 444, 378-382. doi:10.1038/nature05264
[37] Neumann, G., Chen, H., Gao, G.F., Shu, Y.-L. and Kawaoka, Y. (2010) H5N1 influenza viruses: Outbreaks and biological properties. Cell Research, 20, 51-61. doi:10.1038/cr.2009.124
[38] Ayora-Talavera, G., Shelton, H., Scull, M.A., Ren, J., Jones, I.M., et al. (2009) Mutations in H5N1 influenza virus hemagglutinin that confer binding to human tra- cheal airway epithelium. PLoS ONE, 4, Article ID e7836. doi:10.1371/journal.pone.0007836
[39] Gambaryan, A., Tuzikov, A., Pazynina, G., Bovin, N., Balish, A. and Klimov, A. (2006) Evolution of the receptor binding phenotype of influenza a (H5) viruses. Virology, 344, 432-438. doi:10.1016/j.virol.2005.08.035
[40] Scalera, N.M. and Mossad, S.B. (2009) The first pandemic of the 21st century: a review of the 2009 pandemic variant influenza a (H1N1) virus. Postgraduate Medicine, 121, 43-47. doi:10.3810/pgm.2009.09.2051
[41] Maurer-Stroh, S., Lee, R.T., Eisenhaber, F., Cui, L., Phuah, S.P. and Lin, R.T. (2010) A new common mutation in the hemagglutinin of the 2009 (H1N1) influenza A virus. PLoS Currents Influenza, 1, 162. doi:10.1371/currents.RRN1162
[42] Barr, I.G., Cui, L., Komadina, N., Lee, R.T., Lin, R.T., Deng, Y., Caldwell, N., Shaw, R. and Maurer-Stroh, S. (2010) A new pandemic influenza A(H1N1) genetic variant predominated in the winter 2010 influenza season in Australia, New Zealand and Singapore. Euro Surveill, 15, 19692.
[43] Stevens, J., Blixt, O., Chen, L.M., Donis, R.O., Paulson, J.C. and Wilson, I.A. (2008) Recent avian H5N1 viruses exhibit increased propensity for acquiring human receptor specificity. Journal of Molecular Biology, 381, 1382-1394. doi:10.1016/j.jmb.2008.04.016
[44] Fereidouni, S.R., Beer, M., Vahlenkamp, T., and Starick, E. (2009) Differentiation of two distinct clusters among currently circulating influenza A(H1N1) viruses. Euro Surveill, 14, 19409.
[45] Hu, W. (2010) Subtle differences in receptor binding specificity and gene sequences of the 2009 pandemic H1N1 influenza virus. Advances in Bioscience and Biotechnology, 1, 305-314. doi:10.4236/abb.2010.14040
[46] Hu, W. (2011) New mutational trends in the HA protein of 2009 H1N1 pandemic influenza virus from May 2010 to February 2011. Natural Science, 3, 379-387.
[47] Long, J.X., Peng, D.X., Liu, Y.L., Wu, Y.T. and Liu, X.F. (2008) Virulence of H5N1 avian influenza virus enhanced by a 15-nucleotide deletion in the viral nonstructural gene. Virus Genes, 36, 471-478. doi:10.1007/s11262-007-0187-8
[48] Hatta, M., Hatta, Y., Kim, J.H., Watanabe, S., Shinya, K., et al. (2007) Growth of H5N1 influenza a viruses in the upper respiratory tracts of mice. PLoS Pathog, 3, Article ID e133. doi:10.1371/journal.ppat.0030133
[49] Sung, J.C., van Wynsberghe A.W., Amaro, R.E., Li, W.W. and McCammon, J.A. (2010) Role of secondary sialic acid binding sites in influenza N1 neuraminidase. Journal of the American Chemical Society, 132, 2883-2885. doi:10.1021/ja9073672
[50] Hu, W. (2010) Host markers and correlated mutations in the overlapping genes of influenza viruses: M1, M2; NS1, NS2; and PB1, PB1-F2. Natural Science, 2, 1225-1246. doi:10.4236/ns.2010.211150
[51] Hu, W. (2010) Correlated mutations in the four influenza proteins essential for viral RNA synthesis, host adaptation, and virulence: NP, PA, PB1, and PB2. Natural Science, 2, 1138-1147. doi:10.4236/ns.2010.210141