Back
 CS  Vol.6 No.12 , December 2015
An 8 Bit 0.8 GS/s 8.352 mW Modified Successive Approximation Register Based Analog to Digital Converter in 65 nm CMOS
Abstract: We propose a new approach in reducing the power consumption of the successive approximation register Analog to Digital Converter (SAR-ADC) by changing the convergence algorithm of the Digital to Analog converter (DAC) input of the SAR-ADC. Different search algorithms such as binary search tree, moving binary search tree (BST), least significant bit shifter (LSB), adaptive algorithm and split-register moving BST algorithm are designed and analyzed for faster convergence of the DAC input. In this paper, we design a 0.8 GS/s, 8 bit (Effective number of bits (ENOB)—7.42), 8.352 mW SAR ADC with a proposed moving BST algorithm in 65 nm CMOS which ranks amongst the current state of the art ADCs with a FOM 65.25 fJ/step.
Cite this paper: Parthasarathy, A. (2015) An 8 Bit 0.8 GS/s 8.352 mW Modified Successive Approximation Register Based Analog to Digital Converter in 65 nm CMOS. Circuits and Systems, 6, 280-291. doi: 10.4236/cs.2015.612028.
References

[1]   Li, P.W., Chin, M.J., Gray, P.R. and Castello, R. (1984) A Ratio Independent Algorithmic Analog-to-Digital Conversion Technique. IEEE Journal of Solid-State Circuits, SC-19, 1138-1143.
http://dx.doi.org/10.1109/jssc.1984.1052233

[2]   Ohara, H., et al. (1987) A CMOS Programmable Self-Calibrating 13-b Eight Channel Data Acquisition Peripheral. IEEE Journal of Solid-State Circuits, SC-22, 930-938.
http://dx.doi.org/10.1109/JSSC.1987.1052840

[3]   Shih, C.C., et al. (1986) Reference Refreshing Cyclic Analog-to-Digital and Digital-to-Analog Converters. IEEE Journal of Solid-State Circuits, SC-21, 544-554.
http://dx.doi.org/10.1109/JSSC.1986.1052570

[4]   Liew, W.-S., Yao, L.B. and Lian, Y. (2008) A Moving Binary Search SAR-ADC for Low Power Biomedical Data Acquisition System.

[5]   Tousi, Y.M., Li, G., Hassibi, A. and Afshari, E. (2009) A 1 mW 4 Bit 1 Gs/s Delay-Line Based Analog to Digital Converter. Proceedings of IEEE International Symposium on Circuits and Systems (ISCAS), 24-27 May 2009, 1121-1124.

[6]   Yang, J., Niang, T.L. and Broderson, R.W. (2010) A 1 GS/s 6 bit 6.7 mW Successive Approximation ADC Using Asynchronous Processing. IEEE Journal of Solid-State Circuits, 45, 1469-1478.
http://dx.doi.org/10.1109/JSSC.2010.2048139

[7]   Ginsburg, B.P. and Chandrakasan, A.P. (2008) Highly Interleaved 5-Bit, 250-M Sample/s, 1.2-mW ADC with Redundant Channels in 65-nm CMOS. IEEE Journal of Solid-State Circuits, 43, 2641-2650.
http://dx.doi.org/10.1109/JSSC.2008.2006334

[8]   Park, S., Palaskas, Y. and Flynn, M.P. (2007) A 4-GS/s 4-Bit Flash ADC in 0.18 um CMOS. IEEE Journal of Solid-State Circuits, 42, 1865-1872.
http://dx.doi.org/10.1109/JSSC.2007.903053

[9]   Shan, J., Do, M.A., Yeo, K.S. and Lim, W.M. (2008) An 8-Bit 200-M Sample/s Pipelined ADC with Mixed-Mode Front-End S/H Circuit. IEEE Transactions on Circuits and Systems—I: Regular Papers, 55.

[10]   Liu, C.-C., Chang, S.-J. and Huang, G.-Y. (2010) A 10-Bit 50 MS/s SAR ADC with a Monotonic Capacitor Switching Procedure. IEEE Journal of Solid-State Circuits, 45, 731.
http://dx.doi.org/10.1109/JSSC.2010.2042254

 
 
Top