JGIS  Vol.7 No.6 , December 2015
Comparing and Evaluating Probabilistic and Deterministic Spatial Interpolation Methods for Groundwater Level of Haouz in Morocco
ABSTRACT
Growing water scarcity is one of the major challenges of the 21st century, especially in arid and semi-arid climates such as our study area. The efficient, sustainable and integrated groundwater management plays a key role for conserving this vital resource. In order to overcome this issue, the study of aquifer system’s behavior seems necessary. For this purpose, the areal piezometric level map is an essential tool. As piezometric level data are spatially limited in sample points, the spatial interpolation and geostatistics are the best way to produce the needed map. Several methods exist allowing to approach real values with varying degrees of accuracy. This work aims to compare and evaluate spatial interpolation methods for groundwater level of Haouz using a dataset of 39 piezometers. The deterministic methods used in this study are Inverse Distance Weighted (IDW) and Radial Basis Functions (RBF) and the probabilistic ones are ordinary kriging (OK), simple kriging (SK) and universal kriging (UK). This study shows the difficulty of having a key role to choose the suitable method for given input dataset. The best model remains the one that, after comparing several methods, offers the best accuracy, which is assessed using Cross-validation and statistical indicators. The results reveals that ordinary kriging with trend removal technique is the optimal method in this case. It indicates the superiority of this technique with a decrease in Root Mean Square Error (RMSE) up to 61.67%. It underestimates groundwater level with an average of 2.8%, which is reliable. The areal piezometric level and associated prediction standard error maps give additional information and recommendations that characterize the studied aquifer system and will ultimately improve sustainable groundwater management.

Cite this paper
Khazaz, L. , Oulidi, H. , Moutaki, S. and Ghafiri, A. (2015) Comparing and Evaluating Probabilistic and Deterministic Spatial Interpolation Methods for Groundwater Level of Haouz in Morocco. Journal of Geographic Information System, 7, 631-642. doi: 10.4236/jgis.2015.76051.
References
[1]   Smedema, L.K. and Shiati, K. (2002) Irrigation and Salinity: A Perspective Review of the Salinity Hazards of Irrigation Development in the Arid Zone. Irrigation and Drainage Systems, 16, 161-174.
http://dx.doi.org/10.1023/A:1016008417327

[2]   Petit, O. (2004) La surexploitation des eaux souterraines: Enjeux et gouvernance. Natures Sciences Sociétés, 12, 146-156. http://dx.doi.org/10.1051/nss:2004020

[3]   Nayak, P.C., Rao, Y.S. and Sudheer, K. (2006) Groundwater Level Forecasting in A Shallow Aquifer Using Artificial Neural Network Approach. Water Resources Management, 20, 77-90.
http://dx.doi.org/10.1007/s11269-006-4007-z

[4]   Simonovic, S.P. (2002) World Water Dynamics: Global Modeling of Water Resources. Journal of Environmental Management, 66, 249-267. http://dx.doi.org/10.1016/S0301-4797(02)90585-2

[5]   Bruinsma, J. (2009) The Resource Outlook to 2050: By How Much Do Land, Water Use and Crop Yields Need to Increase by 2050? Paper Prepared for the Expert Meeting on How to Feed the World in 2050, Food and Agriculture Organization, Rome.

[6]   Food and Agriculture Organization of the United Nations (2006) World Agriculture: Towards 2030/2050. Interim Report, Food and Agriculture Organization of the United Nations (FAO), Rome, 71.

[7]   OCOD (2000) Politique de gestion intégrée des ressources en eau.

[8]   Pereira, L.S., Oweis, T. and Zairi, A. (2002) Irrigation Management under Water Scarcity. Agricultural Water Management, 57, 175-206. http://dx.doi.org/10.1016/S0378-3774(02)00075-6

[9]   Mancosu, N., Snyder, R.L., Kyriakakis, G. and Spano, D. (2015) Water Scarcity and Future Challenges for Food Production. Water, 7, 975-992. http://dx.doi.org/10.3390/w7030975

[10]   Yang, H. and Zehnder, A.J. (2002) Water Scarcity and Food Import: A Case Study for Southern Mediterranean Countries. World Development, 30, 1413-1430.
http://dx.doi.org/10.1016/S0305-750X(02)00047-5

[11]   Droogers, P., Immerzeel, W., Terink, W., Hoogeveen, J., Bierkens, M., Van Beek, L., et al. (2012) Water Resources Trends in Middle East and North Africa towards 2050. Hydrology and Earth System Sciences, 16, 3101-3114. http://dx.doi.org/10.5194/hess-16-3101-2012

[12]   Lopez, O., Houborg, R. and McCabe, M. (2013) Evaluating Water Storage Variations in the MENA Region Using GRACE Satellite Data. Sahara, 200, 250.

[13]   Bucknall, J. (2007) Making the Most of Scarcity: Accountability for Better Water Management Results in the Middle East and North Africa. World Bank Publications, Washington DC.

[14]   Sowers, J., Vengosh, A. and Weinthal, E. (2011) Climate Change, Water Resources, and the Politics of Adaptation in the Middle East and North Africa. Climatic Change, 104, 599-627.
http://dx.doi.org/10.1007/s10584-010-9835-4

[15]   Leflaive, X., Witmer, M., Martin-Hurtado, R., Bakker, M., Kram, T., Bouwman, L., et al. (2012) Perspectives de l’environnement de l’OCDE à l’horizon 2050. Les conséquences de l’inaction.

[16]   CESE (2014) Rapport du Conseil économique, social et environnemental “La gouvernance par la gestion intégrée des ressources en eau au Maroc: Levier fondamental de développement durable”.

[17]   Reghunath, R., Murthy, T.S. and Raghavan, B. (2005) Time Series Analysis to Monitor and Assess Water Resources: A Moving Average Approach. Environmental Monitoring and Assessment, 109, 65-72. http://dx.doi.org/10.1007/s10661-005-5838-4

[18]   Lefebvre, R., Michaud, Y. and Martel, R. (1999) La cartographie hydrogéologique régionale: Un outil essentiel à l’inventaire des ressources en eaux souterraines. Mémoire du Centre géoscientifique de Québec.

[19]   El Morjani, Z. (2002) Conception d’un système d’information à référence spatiale pour la gestion environnementale; application à la sélection de sites potentiels de stockage de déchets ménagers et industriels en région semi-aride (Souss, Maroc). Universite de Genève, Genève.

[20]   Ahmed, S., Jayakumar, R. and Salih, A. (2008) Groundwater Dynamics in Hard Rock Aquifers: Sustainable Management and Optimal Monitoring Network Design. Springer Science & Business Media, Dordrecht. http://dx.doi.org/10.1007/978-1-4020-6540-8

[21]   Chenini, I., Mammou, A. and El May, M. (2010) Groundwater Recharge Zone Mapping Using GIS-Based Multi-Criteria Analysis: A Case Study in Central Tunisia (Maknassy Basin). Water Resources Management, 24, 921-939. http://dx.doi.org/10.1007/s11269-009-9479-1

[22]   Zhou, F., Guo, H.-C., Ho, Y.-S. and Wu, C.-Z. (2007) Scientometric Analysis of Geostatistics Using Multivariate Methods. Scientometrics, 73, 265-279. http://dx.doi.org/10.1007/s11192-007-1798-5

[23]   Atkinson, P.M. and Lloyd, C.D. (2010) geoENV VII—Geostatistics for Environmental Applications. Springer Science & Business Media, Dordrecht.

[24]   Rouhani, S. and Wackernagel, H. (1990) Multivariate Geostatistical Approach to Space-Time Data Analysis. Water Resources Research, 26, 585-591. http://dx.doi.org/10.1029/WR026i004p00585

[25]   Abrahamsen, P., Hauge, R. and Kolbjornsen, O. (2012) Geostatistics Oslo 2012. Springer Netherlands, Dordrecht. http://dx.doi.org/10.1007/978-94-007-4153-9

[26]   Li, J. and Australia, G. (2008) A Review of Spatial Interpolation Methods for Environmental Scientists. Geoscience Australia, Canberra.

[27]   Theodossiou, N. and Latinopoulos, P. (2006) Evaluation and Optimisation of Groundwater Observation Networks Using the Kriging Methodology. Environmental Modelling & Software, 21, 991-1000. http://dx.doi.org/10.1016/j.envsoft.2005.05.001

[28]   Rakhmatullaev, S., Marache, A., Huneau, F., Le Coustumer, P., Bakiev, M. and Motelica-Heino, M. (2011) Geostatistical Approach for the Assessment of the Water Reservoir Capacity in Arid Regions: A Case Study of the Akdarya Reservoir, Uzbekistan. Environmental Earth Sciences, 63, 447-460.
http://dx.doi.org/10.1007/s12665-010-0711-3

[29]   Sharda, V., Kurothe, R., Sena, D., Pande, V. and Tiwari, S. (2006) Estimation of Groundwater Recharge from Water Storage Structures in a Semi-Arid Climate of India. Journal of Hydrology, 329, 224-243. http://dx.doi.org/10.1016/j.jhydrol.2006.02.015

[30]   Ahmadi, S. and Sedghamiz, A. (2007) Geostatistical Analysis of Spatial and Temporal Variations of Groundwater Level. Environmental Monitoring and Assessment, 129, 277-294.
http://dx.doi.org/10.1007/s10661-006-9361-z

[31]   Uyan, M. and Cay, T. (2013) Spatial Analyses of Groundwater Level Differences Using Geostatistical Modeling. Environmental and Ecological Statistics, 20, 633-646. http://dx.doi.org/10.1007/s10651-013-0238-3

[32]   Ta’any, R., Tahboub, A. and Saffarini, G. (2009) Geostatistical Analysis of Spatiotemporal Variability of Groundwater Level Fluctuations in Amman-Zarqa Basin, Jordan: A Case Study. Environmental Geology, 57, 525-535. http://dx.doi.org/10.1007/s00254-008-1322-0

[33]   Ahmed, S., Kumar, D. and Bhat, A.N. (2008) Application of Geostatistics in Optimal Groundwater Monitoring Network Design. In: Ahmed, S., Jayakumar, R. and Salih, A., Eds., Groundwater Dynamics in Hard Rock Aquifers, Springer, Dordrecht, 179-190. http://dx.doi.org/10.1007/978-1-4020-6540-8_14

[34]   Burrough, P.A. and McDonnell, R.A. (1998) Principles of Geographical Information Systems. Oxford University Press, Oxford.

[35]   Sun, Y., Kang, S., Li, F. and Zhang, L. (2009) Comparison of Interpolation Methods for Depth to Groundwater and Its Temporal and Spatial Variations in the Minqin Oasis of Northwest China. Environmental Modelling & Software, 24, 1163-1170. http://dx.doi.org/10.1016/j.envsoft.2009.03.009

[36]   Kumar, V. and Remadevi (2006) Kriging of Groundwater Levels—A Case Study. Journal of Spatial Hydrology, 6, 81-94.

[37]   Triki, I. (2014) Evaluation de techniques d’interpolation spatiale de la piézométrie à l’aide de l’extension Geostatistical Analyst d’ArcGIS. Cas du système aquifère phréatique de Sfax (Tunisie). Géomatique Expert, 99, 55-63.

[38]   Jarar Oulidi, H., Benaabidate, L., Fryar, A. and Benslimane, A. (2007) Utilisation du SIG pour la modélisation de la variabilité spatiale des valeurs de la transmissivité. In: Allard, P., Fox, D. and Picon, B., Eds., Incertitude et envrionnement, fin des certitudes scientifiques, Edisud, Aix en Provence, 75-86.

[39]   Lahlou, M., Ajerame, M.M., Bogaert, P. and Bousetta, B. (2013) Spatiotemporal Variability and Mapping of Groundwater Salinity in Tadla: Geostatistical Approach. In: Shahid, S.A., Abdelfattah, M.A. and Taha, F.K., Eds., Developments in Soil Salinity Assessment and Reclamation, Springer, Dordrecht, 167-182.

[40]   Rochdane, S., Reddy, D.V. and El Mandour, A. (2015) Hydrochemical and Isotopic Characterisation of Eastern Haouz Plain Groundwater, Morocco. Environmental Earth Sciences, 73, 3487-3500.
http://dx.doi.org/10.1007/s12665-014-3633-7

[41]   ABHT (2015). http://www.eau-tensift.net/

[42]   Galleron, M. (2013) Analyse de la place tenue par la fève (Vicia faba) et de ses modes de conduite dans les exploitations agricoles du périmètre irrigué du Haouz (Maroc).

[43]   Limam, N. (2011) Problématique de surexploitation de la nappe du Haouz dans la région de Marrakech. Hommes Terres et Eaux, HTE No. 148, 72-73.

[44]   Rocle, N. (2005) Gestion des eaux et superposition de réseaux sur la seguia Jbelia, périmètre du N’fis, Haouz de Marrakech, royaume du Maroc. ENGEES FRA (Strasbourg).

[45]   Journel, A.G. and Huijbregts, C.J. (1978) Mining Geostatistics. Academic Press, Waltham.

[46]   Isaaks, E.H. and Srivastava, R.M. (1989) An Introduction to Applied Geostatistics.

[47]   Matheron, G. (1970) The Theory of Regionalized Variables and Its Applications: Ecole des Mines de Paris. Les Cahiers du Centre de Morphologie Mathématique, Fascicule V.

[48]   Matheron, G. (1965) Les variables régionalisées et leur estimation: Une application de la théorie des fonctions aléatoires aux sciences de la nature. Masson, Paris.

[49]   Webster, R. and Oliver, M.A. (2001) Geostatistics for Environmental Scientists (Statistics in Practice).

[50]   Johnston, K., Ver Hoef, J.M., Krivoruchko, K. and Lucas, N. (2001) Using ArcGIS Geostatistical Analyst. Esri, Redlands.

[51]   Chan, K.H., Hayya, J.C. and Ord, J.K. (1977) A Note on Trend Removal Methods: The Case of Polynomial Regression versus Variate Differencing. Econometrica, 45, 737-744. http://dx.doi.org/10.2307/1911686

[52]   Burrough, P.A. (2001) GIS and Geostatistics: Essential Partners for Spatial Analysis. Environmental and Ecological Statistics, 8, 361-377. http://dx.doi.org/10.1023/A:1012734519752

 
 
Top