References
[1] BP: World Reserves of Fossil Fuels.
http://jp.knoema.com/smsfgud/bp-world-reserves-of-fossil-fuels
[2] Gore, A. The End of Fossil Fuels.
https://
www.ecotricity.co.uk/our-green-energy/energy-independence/the-end-of-fossil-fuels
[3] Shafiee, S. (2008) An Overview of Fossil Fuel Reserve Depletion Time. 31st IAEE International Conference, Istanbul, 18-20 June 2008.
http://espace.library.uq.edu.au/view/UQ:197790
[4] Struckmann, L.K.R., Pesched, A., Rauschenbach, R.H. and Sundmacher, K. (2010) Assessment of Methanol Synthesis Utilizing Exhaust CO2 for Chemical Storage of Electrical Energy. Industrial & Engineering Chemistry Research, 49, 11073.
http://dx.doi.org/10.1021/ie100508w
[5] Lunsford, J.H. (2000) Catalytic Conversion of Methane to More Useful Chemicals and Fuels: A Challenge for the 21st Century. Catalysis Today, 63, 165.
http://dx.doi.org/10.1016/S0920-5861(00)00456-9
[6] McDonough, W., Braungart, M., Anastas, P. and Zimmerman, J. (2003) Applying the Principles of Green Engineering to Cradle-to-Cradle Design. Environmental Science & Technology, 37, 434A.
http://dx.doi.org/10.1021/es0326322
[7] Schaaf, T., Grunig, J., Schuster, M.R., Rothenfluh, T. and Orth, A. (2014) Methanation of CO2—Storage of Renewable Energy in a Gas Distribution System. Energy, Sustainability and Society, 4, 29.
[8] Eliasson, B., Kogelschatz, U., Xue, B. and Zhou, L.M. (1998) Hydrogenation of Carbon Dioxide to Methanol with a Discharge-Activated Catalyst. Industrial & Engineering Chemistry Research, 37, 3350.
http://dx.doi.org/10.1021/ie9709401
[9] Gouyard, V., Ttibouet, J. and Duperyrat, C.B. (2009) Influence of the Plasma Power Supply Nature on the Plasma-Catalyst Synergism for the Carbon Dioxide Reforming of Methane. IEEE Transactions on Plasma Science, 37, 2342.
http://dx.doi.org/10.1109/TPS.2009.2033695
[10] Larkin, D.W., Lobban, L.L. and Mallinson, R.G. (2001) Production of Organic Oxygenates in the Partial Oxidation of Methane in a Silent Electric Discharge Reactor. Industrial & Engineering Chemistry Research, 40, 1594.
http://dx.doi.org/10.1021/ie000527k
[11] Mei, D., Zhu, X., He, Y.K., Yan, J.D. and Tu, X. (2015) Plasma-Assisted Conversion of CO2 in a Dielectric Barrier Discharge Reactor: Understanding the Effect of Packing Materials. Plasma Sources Science and Technology, 24, Article ID: 015011.
http://dx.doi.org/10.1088/0963-0252/24/1/015011
[12] Hoeben, W.F.L.M., Boekhoven, W., Beckers, F.J.C.M., Van Heesch, E.J.M. and Pemen, A.J.M. (2014) Partial Oxidation of Methane by Pulsed Corona Discharges. Journal of Physics D: Applied Physics, 47, Article ID: 355202.
http://dx.doi.org/10.1088/0022-3727/47/35/355202
[13] Spencer, L.F. and Gallimore, A.D. (2011) Efficiency of CO2 Dissociation in a Radio-Frequency Discharge. Plasma Chemistry and Plasma Processing, 31, 79-89.
http://dx.doi.org/10.1007/s11090-010-9273-0
[14] Ross, J.R.H. (2005) Natural Gas Reforming and CO2 Mitigation. Catalysis Today, 100, 151-158.
http://dx.doi.org/10.1016/j.cattod.2005.03.044
[15] Mikkelsen, M., Jorgensen, M. and Krebs, F.C. (2010) The Teraton Challenge. A Review of Fixation and Transformation of Carbon Dioxide. Energy & Environmental Science, 3, 43-81.
http://dx.doi.org/10.1039/B912904A
[16] Snoeckx, R., Aerts, R., Tu, X. and Bogaerts, A. (2013) Plasma-Based Dry Reforming: A Computational Study Ranging from the Nanoseconds to Seconds Time Scale. The Journal of Physical Chemistry C, 117, 4957-4970.
http://dx.doi.org/10.1021/jp311912b
[17] Dorai, R., Hassouni, H. and Kushner, M.J. (2000) Interaction between Soot Particles and NOX during Dielectric Barrier Discharge Plasma Remediation of Simulated Diesel Exhaust. Journal of Applied Physics, 88, 6060-6071.
http://dx.doi.org/10.1063/1.1320004
[18] Tao, X., Bai, M., Li, X., Long, H., Shaung, S., Yin, Y. and Dai, X. (2011) CH4-CO2 Reforming by Plasma—Challenges and Opportunities. Progress in Energy and Combustion Science, 37, 113-124.
http://dx.doi.org/10.1016/j.pecs.2010.05.001
[19] Xu, C. and Tu, X. (2013) Plasma-Assisted Methane Conversion in an Atmospheric Pressure Dielectric Barrier Discharge Reactor. Journal of Energy Chemistry, 22, 420-425.
http://dx.doi.org/10.1016/S2095-4956(13)60055-8
[20] Aerts, R., Somers, W. and Bogaerts, A. (2015) Carbon Dioxide Splitting in a Dielectric Barrier Discharge Plasma: A Combined Experimental and Computational Study. ChemSusChem, 8, 702-716.
http://dx.doi.org/10.1002/cssc.201402818
[21] Kano, M., Satoh, G. and Iizuka, S. (2012) Reforming of Carbon Dioxide to Methane and Methanol by Electric Impulse Low-Pressure Discharge with Hydrogen. Plasma Chemistry and Plasma Processing, 32, 177-185.
http://dx.doi.org/10.1007/s11090-011-9333-0
[22] Tsuchiya, T. and Iizuka, S. (2013) Conversion of Methane to Methanol by a Low-Pressure Steam Plasma. Journal of Environmental Engineering and Technology, 2, 35-39.
[23] Arita, K. and Iizuka, S. (2015) Hydrogenation of CO2 to CH4 Using a Low-Pressure Cross-Field Pulse Discharge with Hydrogen. Proceedings of the 22nd International Symposium on Plasma Chemistry, Antwerp, 5-10 July 2015.
[24] Mazloomi, K., Sulaiman, N. and Moayedi, H. (2012) Electrical Efficiency of Electrolytic Hydrogen Production. International Journal of Electrochemical Science, 7, 3314-3326.
[25] Wei, Z.D., Ji, M.B., Chen, S.G., Liu, Y., Sun, C.X., Yin, G.Z., Shen, P.K. and Chan, S.H. (2007) Water Electrolysis on Carbon Electrodes Enhanced by Surfactant. Electrochimica Acta, 52, 3323-3329.
http://dx.doi.org/10.1016/j.electacta.2006.10.011
[26] Schaaf, T., Grunig, J., Schuster, M.R., Rothenfluh, T. and Orth, A. (2014) Methanation of CO2—Storage of Renewable Energy in a Gas Distribution System. Energy, Sustainability and Society, 4, 29.
[27] Fujita, S., Teruuma, H., Nakamura, M. and Takezawa, N. (1991) Mechanisms of Methanation of Carbon Monoxide and Carbon Dioxide over Nickel. Industrial & Engineering Chemistry Research, 30, 1146-1151.
http://dx.doi.org/10.1021/ie00054a012
[28] Hoekman, S.K., Broch, A., Robbins, C. and Purcell, R. (2010) CO2 Recycling by Reaction with Renewably-Generated Hydrogen. International Journal of Greenhouse Gas Control, 4, 44-50.
http://dx.doi.org/10.1016/j.ijggc.2009.09.012