Anomalous Viscosity of Vortex Hall States in Graphene

Show more

References

[1] Mueller, M., Jorg, S. and Lars, F. (2009) Graphene: A Nearly Perfect Fluid. Physical Review Letters, 103, Article ID: 025301.

[2] Mendoza, M., Herrmann, H.J. and Succi, S. (2013) Hydrodynamic Model for Conductivity in Graphene. Scientific Reports, 2, 1052.

[3] Wiegmann, P.B. (2013) Anomalous Hydrodynamics of Fractional Quantum Hall States. Journal of Experimental and Theoretical Physics, 177, 538-550.

http://dx.doi.org/10.1134/S1063776113110162

[4] Levy, N., et al. (2010) Strain Induced Pseudo-Magnetic Fields Greater 300 Tesla in Graphene Nanobubbles. Science, 329, 544-547.

http://dx.doi.org/10.1126/science.1191700

[5] Low, T. and Guinea, F. (2010) Particular Strain Geometry in Graphene Could Lead to A Uniform Pseudomagnetic Field of Order 10 T. Nano Letters, 10, 3551-3554.

http://dx.doi.org/10.1021/nl1018063

[6] Read, N. (2009) Non-Abelian Adiabatic Statistics and Hall Viscosity in Quantum Hall States and p(x) + ip(y) Paired Superfluids. Physical Review B, 79, Article ID: 045308.

[7] Siavah, G., Matthew, M.R. and Dam, T.S. (2014) Effective Field Theory of Relativistic Quantum Hall Systems. JHEP, 12, 138.

[8] Abanov, G.A. (2013) On the Effective Hydrodynamics of the Fractional Quantum Hall Effect. Journal of Physics A: Mathematical and Theoretical, 46, Article ID: 292001.

http://dx.doi.org/10.1088/1751-8113/46/29/292001

[9] Stone, M. (1990) Superfluid Dynamics of the Fractional Hall State. Physical Review B, 42, 1.

http://dx.doi.org/10.1103/PhysRevB.42.212

[10] Camiola, V.D. and Romano, V. (2014) Hydronamic Model for Charge Transport in Graphene.

[11] Goerbig, M.O. and Ragnault, N. (2012) Theoretical Aspects of Fractional Quantum Hall Effect of Graphene. Physica Scripta, 146, Article ID: 014017.

http://dx.doi.org/10.1088/0031-8949/2012/t146/014017

[12] Vibhor, S., et al. (2012) Probing Thermal Expansion of Graphene and Modal Dispersion at Low-Temperature Using Graphene Nanoelectromechanical Systems Resonators. Nanotechnology, 21, Article ID: 165204.

[13] Duhee, Y., Young-W, S. and Hyeonsik, C. (2011) Negative Thermal Expansion Coefficient of Graphene Measured by Raman Spectroscopy. Nano Letters, 11, 3227-3231.

http://dx.doi.org/10.1021/nl201488g

[14] Linas, S., et al (2014) Interplay between Raman Shift and Thermal Expansion in Graphene: Temperature-Dependent Measurements and Analysis of Substrate Corrections. Physical Review B, 91, Article ID: 075426.

[15] Dean, C.R., et al. (2011) Multicomponent Fractional Quantum Hall Effect in Graphene. Nature Physics, 7, 693-696.

http://dx.doi.org/10.1038/nphys2007

[16] Amet, F., et al. (2015) Composite Fermions and Broken Symmetries in Graphene. Nature Communications, 6, 5838.

http://dx.doi.org/10.1038/ncomms6838