[1] Netchitailo, V.S. (2015) 5D World-Universe Model. Space-Time-Energy. Journal of High Energy Physics, Gravitation and Cosmology, 1, 25-34. http://dx.doi.org/10.4236/jhepgc.2015.11003
[2] Netchitailo, V.S. (2015) 5D World-Universe Model. Multicomponent Dark Matter. Journal of High Energy Physics, Gravitation and Cosmology, 1, 55-71. http://dx.doi.org/10.4236/jhepgc.2015.12006
[3] Pontecorvo B. and Smorodinsky, Y. (1962) The Neutrino and the Density of Matter in the Universe. Soviet Physics— JETP, 14, 173.
[4] Kajita, T. (1998) Atmospheric neutrino results from Super-Kamiokande and Kamiokande—Evidence for νμ oscillations. arXiv: 9810001.
[5] Sanchez, M. (2003) Oscillation Analysis of Atmospheric Neutrinos in Soudan 2. PhD Thesis, Tufts University, Medford/Somerville. http://nu.physics.iastate.edu/Site/Bio_files/thesis.pdf
[6] Kaus, P. and Meshkov, S. (2003) Neutrino Mass Matrix and Hierarchy. AIP Conference Proceedings, 672, 117. http://dx.doi.org/10.1063/1.1594399
[7] Dermisek, R. (2004) Neutrino Masses and Mixing, Quark-Lepton Symmetry and Strong Right-Handed Neutrino Hierarchy. Physical Review D, 70, Article ID: 073016.
[8] Gonzalez-Garcia, M.C. and Pena-Garay, C. (2003) Three-Neutrino Mixing after the First Results from K2K and KamLAND. Physical Review D, 68, Article ID: 093003. http://dx.doi.org/10.1103/PhysRevD.68.093003
[9] Maltoni, M., Schwetz, T., Tortola, M.A. and Valle, J.W.F. (2003) Status of Three-Neutrino Oscillations after the SNO- Salt Data. Physical Review D, 68, Article ID: 113010. http://dx.doi.org/10.1103/PhysRevD.68.113010
[10] Battye, R.A. and Moss, A. (2014) Evidence for Massive Neutrinos from CMB and Lensing Observations. arXiv: 1308.5870.
[11] Landau, L.D. and Lifshitz, E.M. (1980) Statistical Physics. Third Edition, Part 1: Volume 5. Butterworth-Heinemann, Oxford.
[12] NASA’s Planck Project Office (2013) Planck Mission Brings Universe into Sharp Focus. https://www.nasa.gov/mission_pages/planck/news/planck20130321.html#.VZ4k5_lViko
[13] Hauser, M.G., Gillett, F.C., Low, F.J., Gautier, T.N., Beichman, C.A., Aumann, H.H., Neugebauer, G., Baud, B., Boggess, N. and Emerson, J.P. (1984) IRAS Observations of the Diffuse Infrared Background. The Astrophysical Journal, 278, L15-L18. http://dx.doi.org/10.1086/184212
[14] Low, F.J., Young, E., Beintema, D.A., Gautier, T.N., Beichman, C.A., Aumann, H.H., Gillett, F.C., Neugebauer, G., Boggess, N. and Emerson, J.P. (1984) Infrared Cirrus-New Components of the Extended Infrared Emission. The Astrophysical Journal, 278, L19-L22. http://dx.doi.org/10.1086/184213
[15] Wang, B. (1991) Integrated Far-Infrared Background from Galaxies. The Astrophysical Journal, 374, 465-474. http://dx.doi.org/10.1086/170136
[16] Wright, E.L. (2001) Cosmic InfraRed Background Radiation. http://www.astro.ucla.edu/~wright/CIBR/
[17] Fixsen, D.J., Cheng, E.S., Gales, J.M., Mather, J.C., ShaFer, R.A. and Wright, E.L. (1996) The Cosmic Microwave Background Spectrum from the Full COBE* FIRAS Data Set. The Astrophysical Journal, 473, 576-587. http://dx.doi.org/10.1086/178173
[18] Finkbeiner, D.P., Davis, M. and Schlegel, D.J. (1999) Extrapolation of Galactic Dust Emission at 100 Microns to CMBR Frequencies Using FIRAS. The Astrophysical Journal, 524, 867-886.
[19] Draine, B.T. and Lazarian, A. (1998) Electric Dipole Radiation from Spinning Dust Grains. The Astrophysical Journal, 508, 157-179. http://dx.doi.org/10.1086/306387
[20] Finkbeiner, D.P. and Schlegel, D.J. (1999) Interstellar Dust Emission as a CMBR Foreground. The Astrophysical Journal, 524, 867-886.
[21] Lagache, G., Abergel, A., Boulanger, F., Désert, F.X. and Puget, J.-L. (1999) First Detection of the Warm Ionized Medium Dust Emission. Implication for the Cosmic Far-Infrared Background. Astronomy and Astrophysics, 344, 322-332.
[22] Finkbeiner, D.P., Davis, M. and Schlegel, D.J. (2000) Detection of a Far IR Excess with DIRBE at 60 and 100 Microns. The Astrophysical Journal, 544, 81-97.
[23] Siegel, P.H. (2002) Terahertz Technology. IEEE Transactions on Microwave Theory and Techniques, 50, 910-928. http://dx.doi.org/10.1109/22.989974
[24] Phillips, T.G. and Keene, J. (1992) Submillimeter Astronomy [Heterodyne Spectroscopy]. Proceedings of the IEEE, 80, 1662-1678. http://dx.doi.org/10.1109/5.175248
[25] Dupac, X., et al. (2003) The Complete Submillimeter Spectrum of NGC 891. arXiv: 0305230.
[26] Aguirre, J.E., Bezaire, J.J., Cheng, E.S., Cottingham, D.A., Cordone, S.S., Crawford, T.M., et al. (2003) The Spectrum of Integrated Millimeter Flux of the Magellanic Clouds and 30-Doradus from TopHat and DIRBE Data. The Astrophysical Journal, 596, 273-286. http://dx.doi.org/10.1086/377601
[27] Pope, A., Scott, D., Dickinson, M., Chary, R.-R., Morrison, G., Borys, C. and Sajina, A. (2006) Using Spitzer to Probe the Nature of Submillimetre Galaxies in GOODS-N. arXiv: 0603409.
[28] Marshall, J.A., Herter, T.L., Armus, L., Charmandaris, V., Spoon, H.W.W., Bernard-Salas, J. and Houck, J.R. (2007) Decomposing Dusty Galaxies. I. Multi-Component Spectral Energy Distribution Fitting. The Astrophysical Journal, 670, 129-155.
[29] Devlin, M.J., Ade, P.A.R., Aretxaga, I., Bock, J.J., Chapin, E.L., Griffin, M., et al. (2009) Over Half of the Far-Infrared Background Light Comes from Galaxies at z ≥ 1.2. Nature, 458, 737-739. http://dx.doi.org/10.1038/nature07918
[30] Chapin, E.L., Chapman, S.C., Coppin, K.E., Devlin, M.J., Dunlop, J.S., Greve, T.R., et al. (2011) A Joint Analysis of BLAST 250-500 um and LABOCA 870 um Observations in the Extended Chandra Deep Field-South. Monthly Notices of the Royal Astronomical Society, 411, 505-549.
[31] Mackenzie, T., Braglia, F.G., Gibb, A.G., Scott, D., Jenness, T., Serjeant, S., et al. (2011) A Pilot Study for the SCUBA-2 “All-Sky” Survey. Monthly Notices of the Royal Astronomical Society, 415, 1950-1960.
[32] Serra, P., Lagache, G., Doré, O., Pullen, A. and White, M. (2014) Cross-Correlation of Cosmic Infrared Background Anisotropies with Large Scale Structures. Astronomy & Astrophysics, 570, A98. http://dx.doi.org/10.1051/0004-6361/201423958
[33] Maurette, M., Cragin, J. and Taylor, S. (1992) Cosmic Dust in 50 KG Blocks of Blue Ice from Cap-Prudhomme and Queen Alexandra Range, Antarctica. Meteoritics, 27, 257.
[34] Saxton, J.M., Knotts, S.F., Turner, G. and Maurette, M. (1992) 40Ar/39Ar Studies of Antarctic Micrometeorites. Meteoritics, 27, 285.
[35] Jackson, A.A. and Zook, H.A. (1991) Dust Particles from Comets and Asteroids: Parent-Daughter Relationships. Abstracts of the Lunar and Planetary Science Conference, 22, 629-630.
[36] Corda, C. (2009) Interferometric Detection of Gravitational Waves: The Definitive Test for General Relativity. International Journal of Modern Physics D, 18, 2275-2282. http://dx.doi.org/10.1142/s0218271809015904
[37] Mannheim, P.D. (1978) Parity Violation and the Masslessness of the Neutrino. http://www.osti.gov/scitech/servlets/purl/6506305/
[38] Cortina, G.E., et al. (1996) Study of Rare B Decays with the DELPHI Detector at LEP. http://hdl.handle.net/2078.1/123879
[39] Samsonenko, N.V. (2007) Fundamental Interactions and Their Relative Contribution to the Nuclear Reactions at Low Energies. International Conference on Condensed Matter Nuclear Science, 125. http://newenergytimes.com/v2/conferences/2007/ICCF13/ICCF13-Abstracts.pdf
[40] Altmannshofer, W., Buras, A.J., Straub, D.M. and Wick, M. (2009) New Strategies for New Physics Search in B -> K* nu anti-nu, B -> K nu anti-nu and B -> X(s) nu anti-nu Decays. Journal of High Energy Physics, 2009, Article No.: 022.
[41] Straub, D.M. (2010) Supersymmetry, the Flavour Puzzle and Rare B Decays. PhD Thesis, Munich Technical University, Munich. https://mediatum.ub.tum.de/doc/981472/981472.pdf
[42] del Amo Sanchez, P., et al. (2011) Search for the Rare Decay B->K nu nubar. Physical Review D, 82, Article ID: 112002.
[43] Sharafiddinov, R.S. (2011) An Axial Vector Nature of a Neutrino with an Electroweak Mass. Acta Radiologica, 42, 291-293.
[44] Würthwein, F. (2011) Search for Higgs in the Dilepton Dineutrino Final State with CMS. UCSD, San Diego. http://uaf-2.t2.ucsd.edu/~fkw/ggi-2011.pdf
[45] Li, X.-Q., Yang, Y.-D. and Yuan, X.-B. (2012) Anomalous tqZ Coupling Effects in Rare B- and K-Meson Decays. Journal of High Energy Physics, 2012, Article No.: 18.
[46] Hoonhout, B. (2014) Higgs Spin Analysis in Collins-Soper Frame Using Opening Angles of Different-Flavour Final State. PhD Thesis, Amsterdam University, Amsterdam. https://esc.fnwi.uva.nl/thesis/centraal/files/f40866552.pdf
[47] Hall, D.C. (2014) Discovery and Measurement of the Higgs Boson in the WW Decay Channel. PhD Thesis, University of Oxford, Oxford. http://inspirehep.net/record/1339842/files/CERN-THESIS-2014-130.pdf
[48] Oussoren, K. (2015) Angular Analysis in HWW. ATLAS Outing 2015. https://indico.nikhef.nl/getFile.py/access?contribId=6&sessionId=0&resId=0&materialId=slides&confId=145
[49] Sin, S.-J. (1992) Late Time Cosmological Phase Transition and Galactic Halo as Bose-Liquid. arXiv: 9205208.
[50] Robles, V.H. and Matos, M. (2012) Flat Central Density Profile and Constant DM Surface Density in Galaxies from Scalar Field Dark Matter. Monthly Notices of the Royal Astronomical Society, 422, 282-289.
[51] Magana, J., and Matos, T. (2012) A Brief Review of the Scalar Field Dark Matter Model. Journal of Physics: Conference Series, 378, Article ID: 012012. http://dx.doi.org/10.1088/1742-6596/378/1/012012
[52] Suarez, A., Robles, V.H. and Matos, T. (2013) A Review on the Scalar Field/Bose-Einstein Condensate Dark Matter Model. In: González, C.M., Aguilar, J.E.M. and Barrera, L.M.R., Eds., Accelerated Cosmic Expansion, Springer, Berlin, 107-142.
[53] Diez-Tejedor, A., Gonzalez-Morales, A.X. and Profumo, S. (2014) Dwarf Spheroidal Galaxies and Bose-Einstein Condensate Dark Matter. Physical Review D, 90, Article ID: 043517. http://dx.doi.org/10.1103/physrevd.90.043517
[54] Sikivie, P. and Yang, Q. (2009) Bose-Einstein Condensation of Dark Matter Axions. Physical Review Letters, 103, Article ID: 111301. http://dx.doi.org/10.1103/physrevlett.103.111301
[55] Erken, O., Sikivie, P., Tam, H. and Yang, Q. (2011) Axion BEC Dark Matter. arXiv: 1111.3976.
[56] Banik, N. and Sikivie, P. (2013) Axions and the Galactic Angular Momentum Distribution. Physical Review D, 88, Article ID: 123517. http://dx.doi.org/10.1103/physrevd.88.123517
[57] Davidson, S. and Elmer, M. (2013) Bose Einstein Condensation of the Classical Axion Field in Cosmology? Journal of Cosmology and Astroparticle Physics, 2013, Article No.: 034.
[58] Li, M.-H. and Li, Z.-B. (2014) Constraints on Bose-Einstein-Condensed Axion Dark Matter from the HI nearby Galaxy Survey Data. Physical Review D, 89, Article ID: 103512. http://dx.doi.org/10.1103/physrevd.89.103512
[59] Morikawa, M. (2004) Structure Formation through Cosmic Bose Einstein Condensation-Unified View of Dark Matter and Energy. 22nd Texas Symposium on Relativistic Astrophysics, Stanford, 13-17 December 2004, 1122.
[60] Garay, L.J., Anglin, J.R., Cirac, J.I. and Zoller, P. (2000) Sonic Analog of Gravitational Black Holes in Bose-Einstein Condensates. Physical Review Letters, 85, 4643-4647. http://dx.doi.org/10.1103/physrevlett.85.4643
[61] Ueda, M. and Huang, K. (1998) Fate of a Bose-Einstein Condensate with Attractive Interaction. arXiv: 9807359.
[62] Hujeirat, A.A. (2011) On the Viability of Gravitational Bose-Einstein Condensates as Alternatives to Supermassive Black Holes. Monthly Notices of the Royal Astronomical Society, 423, 2893-2900.
[63] Kuhnel, F. and Sundborg, B. (2014) Decay of Graviton Condensates and their Generalizations in Arbitrary Dimensions. Physical Review D, 90, Article ID: 064025. http://dx.doi.org/10.1103/physrevd.90.064025
[64] Hauser, M.G. and Dwek, E. (2001) The Cosmic Infrared Background: Measurements and Implications. Annual Review of Astronomy & Astrophysics, 39, 249-307.
[65] Kashlinsky, A. (2005) Cosmic Infrared Background and Early Galaxy Evolution. Physics Reports, 409, 361-438. http://dx.doi.org/10.1016/j.physrep.2004.12.005
[66] Wesson, P.S. (1983) A New Approach to Scale-Invariant Gravity. Astronomy & Astrophysics, 119, 145-152.
[67] Overduin, J.M. and Wesson, P.S. (1998) Kaluza-Klein Gravity. Physics Reports, 283, 303-380.
[68] Fixsen, D.J. (2009) The Temperature of the Cosmic Microwave Background. The Astrophysical Journal, 707, 916-920. http://dx.doi.org/10.1088/0004-637x/707/2/916
[69] Burbidge, E.M., Burbidge, G.R., Fowler, W.A. and Hoyle, F. (1957) Synthesis of the Elements in Stars. Reviews of Modern Physics, 29, 547-650. http://dx.doi.org/10.1103/RevModPhys.29.547
[70] Wolfenstein, L. (1994) Superweak Interactions. Comments on Nuclear and Particle Physics, 21, 275.
[71] Yamaguchi, Y. (1959) Possibility of Super-Weak Interactions and the Stability of Matter. Progress of Theoretical Physics, 22, 373-380. http://dx.doi.org/10.1143/PTP.22.373
[72] Kelley, K.F. (1999) Measurement of the CP Violation Parameter . PhD Thesis, MIT, Cambridge, MA.
[73] Bian, B.A., Feng, Z.Q., Li, W.F., Ming, Z.Y., Chen, L.W., Jin, G.M., et al. (2006) Determination of the NN Cross Section, Symmetry Energy, and Studying of Weak Interaction in CSR. http://ribll.impcas.ac.cn/conf/ccast05/doc/RIB05-zhangfengshou.pdf
[74] McDonald, A.B. (2003) Neutrino Properties from Measurements using Astrophysical and Terrestrial Sources. arXiv: 0310775.