Effect of Perturbations in Coriolis and Centrifugal Forces on the Non-Linear Stability of L4 in the Photogravitational Restricted Three Body Problem

Show more

References

[1] Deprit, A. and Deprit-Bartholome, A. (1967) Stability of the Triangular Lagrangian Points. Astronomical Journal, 72, 173-179.

http://dx.doi.org/10.1086/110213

[2] Bhatnagar, K.B. and Hallan, P.P. (1983) The Effect of Perturbation in Coriolis and Centrifugal Forces on the Nonlinear Stability of Equilibrium Points in the Restricted Problem of Three Bodies. Celestial Mechanics, 30, 97-114.

http://dx.doi.org/10.1007/BF01231105

[3] Aggarwal, R., Taqvi, Z.A. and Ahmad, I. (2006) Non-Linear Stability of in the Restricted Three Body Problem for radiated Axes Symmetric Primaries with Resonances. Bulletin of Astronomical Society of India, 34, 327-356.

[4] Jain, M. and Aggarwal, R. (2015) A Study of Non-Collinear Libration Points in Restricted Three Body Problem with Stokes Drag Effect when Smaller Primary Is an Oblate Spheroid. Astrophysics and Space Science, 358, 51.

http://dx.doi.org/10.1007/s10509-015-2457-6

[5] Kaur, B. and Aggarwal, R. (2013) Robe’s restricted Problem of 2+2 Bodies when the Bigger Primary Is a Roche Ellipsoid. Acta Astronautica, 89, 31-37.

http://dx.doi.org/10.1016/j.actaastro.2013.03.022

[6] Singh, J. (2011) Combined Effects of Perturbations, Radiation and Oblateness on the Non-Linear Stability of Triangular Points in the R3BP. Astrophysics and Space Science, 332, 331-339.

http://dx.doi.org/10.1007/s10509-010-0546-0

[7] Szebehely, V. (1967) Theory of Orbits. Academic Press, New York, 242-264.

[8] Whittaker, E.T. (1965) A Treatise on the Analytical Dynamics of Particles and Rigid Bodies. Cambridge University Press, London, 427-430.

[9] Moser, J. (1953) Periodische Losungen des restringierten Dreikorperproblems, die sich erst nach vielen umlaufen schliessen. Mathematische Annalen, 126, 325-335.

http://dx.doi.org/10.1007/BF01343166