ABC  Vol.5 No.7 , December 2015
Hsp90 and ECM29 Are Important to Maintain the Integrity of Mammalian 26S Proteasome
Abstract: The proteasome is a protease complex composed of a core particle (CP) and regulatory particles (RPs) that bind to both ends of the CP. ECM29 is a protein that associates with the proteasome and is involved in the maintenance and regulation of the proteasome assembly. However, ECM29 deficient mice can form functional proteasome. In this paper we sought to identify the mechanisms and/or proteins that help and allow the maintenance of the proteasome activity in the absence of ECM29. We analyzed the proteasome components of ECM29-deficient mice and identified Hsp90 as a protein associated with the proteasome. Furthermore, the inhibition of Hsp90 led to a partial disassembly of the proteasome only in ECM29-deficient cells. Those findings attest to the importance of Hsp90 for the maintenance of the proteasome integrity in the absence of ECM29.
Cite this paper: Acquah, J. , Haratake, K. , Rakwal, R. , Udono, H. and Chiba, T. (2015) Hsp90 and ECM29 Are Important to Maintain the Integrity of Mammalian 26S Proteasome. Advances in Biological Chemistry, 5, 255-265. doi: 10.4236/abc.2015.57022.

[1]   Rock, K.L., Gramm, C., Rothstein, L., Clark, K., Stein, R., Dick, L., Hwang, D. and Goldberg, A.L. (1994) Inhibitors of the Proteasome Block the Degradation of Most Cell Proteins and the Generation of Peptides Presented on MHC Class I Molecules. Cell, 78, 761-771.

[2]   Lee, D.H. and Goldberg, A.L. (1998) Proteasome Inhibitors: Valuable New Tools for Cell Biologists. Trends in Cell Biology, 8, 397-403.

[3]   Hoffman, L., Pratt, G. and Rechsteiner, M. (1992) Multiple Forms of the 20S Multicatalytic and the 26 S Ubiquitin/ ATP-Dependent Proteases from Rabbit Reticulocyte Lysate. The Journal of Biological Chemistry, 267, 22362-22368.

[4]   Da Fonseca, P.C.A. and Morris, E.P. (2008) Structure of the Human 26S Proteasome: Subunit Radial Displacements Open the Gate into the Proteolytic Core. The Journal of Biological Chemistry, 283, 23305-23314.

[5]   Lowe, J., Stock, D., Jap, B., Zwickl, P., Baumeister, W. and Huber, R. (1995) Crystal Structure of the 20S Proteasome from the Archaeon T. Acidophilum at 3.4 A Resolution. Science, 268, 533-539.

[6]   Groll, M., Ditzel, L., Lowe, J., Stock, D., Bochtler, M., Bartunik, H.D. and Huber R. (1997) Structure of 20S Proteasome from Yeast at 2.4 A Resolution. Nature, 386, 463-471.

[7]   Glickman, M.H., Rubin, D.M., Fried, V.A. and Finley, D. (1998) The Regulatory Particle of the Saccharomyces cerevisiae Proteasome. Molecular and Cellular Biology, 18, 3149-3162.

[8]   Glickman, M.H., Rubin, D.M., Coux, O., Wefes, I., Pfeifer, G., Cjeka, Z., Baumeister, W., Fried, V.A. and Finley, D. (1998) A Subcomplex of the Proteasome Regulatory Particle Required for Ubiquitin-Conjugate Degradation and Related to the COP9-Signalosome and eIF3. Cell, 94, 615-623.

[9]   Larsen, C.N. and Finley, D. (1997) Protein Translocation Channels in the Proteasome and Other Proteases. Cell, 91, 431-434.

[10]   Baumeister, W., Walz, J., Zuhl, F. and Seemuller, E. (1998) The Proteasome: Paradigm of a Self-Compartmentalizing Protease. Cell, 92, 367-380.

[11]   Pickart, C. (1997) Targeting of Substrates to the 26S Proteasome. The FASEB Journal, 11, 1055-1066.

[12]   Ahn, K., Erlander, M., Leturcq, D., Peterson, P.A., Früh, K. and Yang, Y. (1996) In Vivo Characterization of the Proteasome Regulator PA28. The Journal of Biological Chemistry, 271, 18237-18242.

[13]   Kuehn, L. and Dahlmann, B. (1997) Structural and Functional Properties of Proteasome Activator PA28. Molecular Biology Reports, 24, 89-93.

[14]   Preckel, T., Fung-Leung, W.P., Cai, Z., Vitiello, A., Salter-Cid, L., Winqvist, O., Wolfe, T.G., Von Herrath, M., Angulo, A., Ghazal, P., Lee, J.D., Fourie, A.M., Wu, Y., Pang, J., Ngo, K., Peterson, P.A., Früh, K. and Yang, Y. (1999) Impaired Immunoproteasome Assembly and Immune Responses in PA28-/- Mice. Science, 286, 2162-2165.

[15]   Cascio, P., Call, M., Petre, B.M., Walz, T. and Goldberg, A.L. (2002) Properties of the Hybrid Form of the 26S Proteasome Containing both 19S and PA28 Complexes. The EMBO Journal, 21, 2636-2645.

[16]   Zhang, Z. and Zhang, R. (2008) Proteasome Activator PA28γ Regulates p53 by Enhancing Its MDM2-Mediated Degradation. The EMBO Journal, 27, 852-864.

[17]   Murata, S., Kawahara, H., Tohma, S., Yamamoto, K., Kasahara, M., Nabeshima, Y.I., Tanaka, K. and Chiba, T. (1999) Growth Retardation in Mice Lacking the Proteasome Activator PA28γ. The Journal of Biological Chemistry, 274, 38211-38215.

[18]   Ortega, J., Heymann, J.B., Kajava, A.V., Ustrell, V., Rechsteiner, M. and Steven, A.C. (2005) The Axial Channel of the 20S Proteasome Opens upon Binding of the PA200 Activator. Journal of Molecular Biology, 346, 1221-1227.

[19]   Iwanczyk, J., Sadre-Bazzaz, K., Ferrell, K., Kondrashkina, E., Formosa, T., Hill, C.P. and Ortega1, J. (2006) Structure of the Blm10-20S Proteasome Complex by Cryo-Electron Microscopy, Insights into the Mechanism of Activation of Mature Yeast Proteasomes. Journal of Molecular Biology, 363, 648-659.

[20]   Blickwedehl, J., Olejniczak, S., Cummings, R., Sarvaiya, N., Mantilla, A., Chanan-Khan, A., Pandita, T.K., Schmidt, M., Thompson, C.B. and Bangia, N. (2012) The Proteasome Activator PA200 Regulates Tumor Cell Responsiveness to Glutamine and Resistance to Ionizing Radiation. Molecular Cancer Research, 10, 937-944.

[21]   Khor, B., Bredemeyer, A.L., Huang, C.Y., Turnbull, I.R., Evans, R., Maggi, L.B., White, J.M., Walker, L.M., Carnes, K., Hess, R.A. and Sleckman, B.P. (2006) Proteasome Activator PA200 Is Required for Normal Spermatogenesis. Molecular and Cellular Biology, 26, 2999-3007.

[22]   Gorbea, C., Goellner, G.M., Teter, K., Holmes, R.K. and Rechsteiner, M. (2004) Characterization of Mammalian Ecm29, a 26S Proteasome-Associated Protein That Localizes to the Nucleus and Membrane Vesicles. The Journal of Biological Chemistry, 279, 54849-54861.

[23]   Leggett, D.S., Hanna, J., Borodovsky, A., Crosas, B., Schmidt, M., Baker, R.T., Walz, T., Ploegh, H. and Finley, D. (2002) Multiple Associated Proteins Regulate Proteasome Structure and Function. Molecular Cell, 10, 495-507.

[24]   Lehmann, A., Niew-ienda, A., Jechow, K., Janek, K. and Enenkel, C. (2010) Ecm29 Fulfils Quality Control Functions in Proteasome Assembly. Molecular Cell, 38, 879-888.

[25]   Kajavaa, A.V., Gorbeab, C., Ortegac, J., Rechsteinerb, M. and Steven, A.C. (2004) New HEAT-Like Repeat Motifs in Proteins Regulating Proteasome Structure and Function. Journal of Structural Biology, 146, 425-430.

[26]   Elsasser, S., Chandler-Militello, D., Müller, B., Hanna, J. and Finley, D. (2004) Rad23 and Rpn10 Serve as Alternative Ubiquitin Receptors for the Proteasome. The Journal of Biological Chemistry, 279, 26817-26822.

[27]   Schmidt, M., Hanna, J., Elsasser, S. and Finley, D. (2005) Proteasome-Associated Proteins: Regulation of a Proteolytic Machine. The Journal of Biological Chemistry, 386, 725-737.

[28]   Guerrero, C., Tagwerker, C., Kaiser, P. and Huang, L. (2006) An Integrated Mass Spectrometry-Based Proteomic Approach: Quantitative Analysis of Tandem Affinity-Purified in Vivo Cross-Linked Protein Complexes (QTAX) to Decipher the 26S Proteasome-Interacting Network. Molecular and Cellular Proteomics, 5, 366-378.

[29]   Taipale, M., Jarosz, D.F. and Lindquist, S. (2010) Hsp90 at the Hub of Protein Homeostasis: Emerging Mechanistic Insights. Nature Reviews Molecular Cell Biology, 11, 515-528.

[30]   Nathan, D.F., Vos, M.H. and Lindquist, S. (1997) In Vivo Functions of the Saccharomyces cerevisiae Hsp90 Chaperone. Proceedings of the National Academy of Sciences of the United States of America, 94, 12949-12956.

[31]   Zhao, R., Davey, M., Hsu, Y.C., Kaplanek, P., Tong, A., Parsons, A.B., Krogan, N., Cagney, G., Mai, D., Greenblatt, J., Boone, C., Emili, A. and Houry, W.A. (2005) Navigating the Chaperone Network: An Integrative Map of Physical and Genetic Interactions Mediated by the Hsp90 Chaperone. Cell, 120, 715-727.

[32]   Picard, D. (2002) Heat-Shock Protein 90, a Chaperone for Folding and Regulation. Cellular and Molecular Life Sciences, 59, 1640-1648.

[33]   Smith, D.F. (1993) Dynamics of Heat-Shock Protein 90-Progesterone Receptor Binding and the Disactivation Loop Model for Steroid Receptor Complexes. Molecular Endocrinology, 7, 1418-1429.

[34]   Pratt, W.B., Morishima, Y., Peng, H.M. and Osawa, Y. (2010) Proposal for a Role of the Hsp90/Hsp70-Based Chaperone Machinery in Making Triage Decisions When Proteins Undergo Oxidative and Toxic Damage. Experimental Biology and Medicine, 235, 278-289.

[35]   Imai, J., Maruya, M., Yashiroda, H., Yahara, I. and Tanaka, K. (2003) The Molecular Chaperone Hsp90 Plays a Role in the Assembly and Maintenance of the 26S Proteasome. The EMBO Journal, 22, 3557-3567.

[36]   Verma, R., Chen, S., Feldman, R., Schieltz, D., Yates, J., Dohmen, J. and Deshaies, R.J. (2000) Proteasomal Proteomics: Identification of Nucleotide-Sensitive Proteasome-Interacting Proteins by Mass Spectrometric Analysis of Affinity-Purified Proteasomes. Molecular Biology of the Cell, 11, 3425-3439.

[37]   Yamano, T., Mizukami, S., Murata, S., Chiba, T., Tanaka, K. and Udono, H. (2008) Hsp90-Mediated Assembly of the 26S Proteasome Is Involved in Major Histocompatibility Complex Class I Antigen Processing. The Journal of Biological Chemistry, 283, 28060-28065.

[38]   Hori, M., Nakamachi, T., Rakwal, R., Shibato, J., Ogawa, T., Aiuchi, T., Tsuruyama, T., Tamaki, K. and Shioda, S. (2012) Transcriptomics and Proteomics Analyses of the PACAP38 Influenced Ischemic Brain in Permanent Middle Cerebral Artery Occlusion Model Mice. Journal of Neuroinflammation, 9, 256-274.

[39]   Tanahashi, N., Yokota, K., Ahn, J.Y., Chung, C.H., Fujiwara, T., Takahashi, E., DeMartino G.N., Slaughter, C.A., Toyonaga, T., Yamamura, K., Shimbara, N. and Tanaka, K. (1997) Molecular Properties of the Proteasome Activator PA28 Family Proteins and Gamma-Interferon Regulation. Genes to Cells, 2, 195-211.

[40]   Tanahashi, N., Suzuki, M., Fujiwara, T., Takahashi, E., Shimbara, N., Chung, C.H. and Tanaka, K. (1998) Chromosomal Localization and Immunological Analysis of a Family of Human 26S Proteasomal ATPases. Biochemical and Biophysical Research Communications, 243, 229-232.

[41]   Leggett, D.S., Glickman, M.H. and Finley, D. (2005) Purification of Proteasomes, Proteasome Subcomplexes, and Proteasome-Associated Proteins from Budding Yeast. Methods in Molecular Biology, 301, 57-70.

[42]   Besche, H.C., Haas, W., Gygi, S.P. and Goldberg, A.L. (2009) Isolation of Mammalian 26S Proteasomes and p97/VCP Complexes Using the Ubiquitin-Like Domain from HHR23B Reveals Novel Proteasome-Associated Proteins. Biochemistry, 48, 2538-2549.

[43]   De La Mota-Peynado, Lee, S.Y.C., Pierce, B.M., Wani, P., Singh, C.R. and Roelofs, J. (2013) The Proteasome-Associated Protein Ecm29 Inhibits Proteasomal ATPase Activity and in Vivo Protein Degradation by the Proteasome. The Journal of Biological Chemistry, 288, 29467-29481.

[44]   Schneider, C., Sepp-Lorenzino, L., Nimmesgern, E., Ouerfelli, O., Danishefsky, S., Rosen, N. and Hartl, F.U. (1996) Pharmacologic Shifting of a Balance between Protein Refolding and Degradation Mediated by Hsp90. Proceedings of the National Academy of Sciences of the United States of America, 93, 14536-14541.

[45]   Aparajita, D., and Arthur, I.C. (2006) Geldanamycin, an Inhibitor of Hsp90, Potentiates Cytochrome P4502E1-Mediated Toxicity in HepG2 Cells. Journal of Pharmacology and Experimental Therapeutics, 317, 1391-1399.

[46]   Pickering, A.M., Koop, A.L., Teoh, C.Y., Ermak, G., Grune T. and Davies K. J. (2010) The Immunoproteasome, the 20S Proteasome, and the PA28αβ Proteasome Regulator Are Oxidative-Stress-Adaptive Proteolytic Complexes. Biochemical Journal, 432, 585-594.

[47]   Seifert, U., Bialy, L.P., Ebstein, F., Bech-Otschir, D., Voigt, A., Schroter, F., Prozorovski, T., Lange, N., Steffen, J., Rieger, M., Kuckelkorn, U., Aktas, O., Kloetzel, P.M. and Krüger, E. (2010) Immunoproteasomes Preserve Protein Homeostasis upon Interferon-Induced Oxidative Stress. Cell, 142, 613-624.

[48]   Charity, T.A., Robyn, M.K., Xiaorong, W. and Lan, H. (2011) Oxidative Stress-Mediated Regulation of Proteasome Complexes. Molecular and Cellular Proteomics, 10, Article ID: 006924.