Back
 JPEE  Vol.3 No.12 , December 2015
Electric-Field-Assisted Growth of Ga-Doped ZnO Nanorods Arrays for Dye-Sensitized Solar Cells
Abstract: A photoanode with Ga-doped ZnO nanorods has been prepared on F-doped SnO2 (FTO) coated glass substrate and its application in dye-sensitized solar cells (DSSCs) has been investigated. Ga-doped ZnO nanorods have been synthesized by an electric-field-assisted wet chemical approach at 80?C. Under a direct current electric field, the nanorods predominantly grow on cathodes. The results of the X-ray photoelectron spectroscopy and photoluminescence verify that Ga dopant is successfully incorporated into the ZnO wurtzite lattice structure. Finally, employing Ga-doped ZnO nanorods with the length of ~5 μm as the photoanode of DSSCs, an overall energy conversion efficiency of 2.56% is achieved. The dramatically improved performance of Ga-doped ZnO based DSSCs compared with that of pure ZnO is due to the higher electron conductivity.
Cite this paper: Duan, J. , Xiong, Q. , Hu, J. and Wang, H. (2015) Electric-Field-Assisted Growth of Ga-Doped ZnO Nanorods Arrays for Dye-Sensitized Solar Cells. Journal of Power and Energy Engineering, 3, 11-18. doi: 10.4236/jpee.2015.312002.
References

[1]   O’Regan, B. and Grätzel, M. (1991) A Low-Cost, High-Efficiency Solar Cell Based on Dye-Sensitized Colloidal TiO2 Films. Nature, 353, 737-740.
http://dx.doi.org/10.1038/353737a0

[2]   Chen, C.Y., Wang, M.K., Li, J.Y., Pootrakulchote, N., Alibabaei, L., Ngoc-le, C., Decoppet, J., Tsai, J., Grätzel, C., Wu, C., Zakeeruddin, S.M. and Grätze, M. (2009) Highly Efficient Light-Harvesting Ruthenium Sensitizer for Thin-Film Dye-Sensitized Solar Cells. ACS Nano, 3, 3103-3109.
http://dx.doi.org/10.1021/nn900756s

[3]   Yella, A., Lee, H.W., Tsao, H.N., Yi, C.Y., Chandiran, A.K., Nazeeruddin, M.K., Diau, E.W.G., Yeh, C.Y., Zakeeruddin, S.M. and Grätzel, M. (2011) Porphyrin-Sensitized Solar Cells with Cobalt (II/III)—Based Redox Electrolyte Exceed 12 Percent Efficiency. Science, 334, 629-634.
http://dx.doi.org/10.1126/science.1209688

[4]   Hagfeldt, A. (2012) Brief Overview of Dye-Sensitized Solar Cells. Ambio, 41, 151-155.

[5]   Bazzan, G., Deneault, J.R., Kang, T., Taylor, B.E. and Durstock, M.F. (2011) Nanoparticle/Dye Interface Optimization in Dye-Sensitized Solar Cells. Advanced Functional Materials, 21, 3268-3274.
http://dx.doi.org/10.1002/adfm.201100595

[6]   Tétreault, N., Arsenault, é., Heiniger, L.P., Soheilnia, N., Brillet, J., Moehl, T., Zakeeruddin, S., Ozin, G.A. and Grätzel, M. (2011) High-Efficiency Dye-Sensitized Solar Cell with Three-Dimensional Photoanode. Nano Letters, 11, 4579-4584.
http://dx.doi.org/10.1021/nl201792r

[7]   Desai, U.V., Xu, C.K., Wu, J.M. and Gao, D. (2013) Hybrid TiO2-SnO2 Nanotube Arrays for Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 117, 3232-3239.
http://dx.doi.org/10.1021/jp3096727

[8]   Lv, M., Zheng, D., Ye, M., Sun, L., Xiao, J., Guo, W. and Lin, C. (2012) Densely Aligned Rutile TiO2 Nanorod Arrays with High Surface Area for Efficient Dye-Sensitized Solar Cells. Nanoscale, 4, 5872-5879.
http://dx.doi.org/10.1039/c2nr31431b

[9]   Irene, G.V. and Monica, L.C. (2009) Vertically-Aligned Nanostructures of ZnO for Excitonic Solar Cells: A Review. Energy & Environmental Science, 2, 19-34.
http://dx.doi.org/10.1039/B811536B

[10]   Wang, X.N., Zhu, H.J., Xu, Y.M., Wang, H., Tao, Y., Hark, S., Xiao, X.D. and Li, Q. (2010) Aligned ZnO/CdTe Core-Shell Nanocable Arrays on Indium Tin Oxide. ACS Nano, 4, 3302-3308.
http://dx.doi.org/10.1021/nn1001547

[11]   Xu, C.K., Wu, J.M., Desai, U.V. and Gao, D. (2011) Multilayer Assembly of Nanowire Arrays for Dye-Sensitized Solar Cells. Journal of the American Chemical Society, 133, 8122-8125.
http://dx.doi.org/10.1021/ja202135n

[12]   Wang, H., Wang, T., Wang, X.N., Liu, R., Wang, H.B., Xu, Y., Zhang, J. and Duan, J.X. (2012) Double-Shelled ZnO/ CdSe/CdTe Nanocable Arrays for Photovoltaic Applications: Microstructure Evolution and Interfacial Energy Alignment. Journal of Materials Chemistry, 22, 12532-12537.
http://dx.doi.org/10.1039/c2jm32253f

[13]   Son, D.Y., Im, J.H., Kim, H.S. and Park, N.G. (2014) 11% Efficient Perovskite Solar Cell Based on ZnO Nanorods: An Effective Charge Collection System. Journal of Physical Chemistry C, 118, 16567-16573.
http://dx.doi.org/10.1021/jp412407j

[14]   Duan, J.X., Huang, X.T., Wang, E.K. and Ai, H.H. (2006) Synthesis of Hollow ZnO Microspheres by an Integrated Autoclave and Pyrolysis Process. Nanotechnology, 17, 1786-1790.
http://dx.doi.org/10.1088/0957-4484/17/6/040

[15]   Zeng, H.B., Duan, G.T., Li, Y., Yang, S.K., Xu, X.X. and Cai, W.P. (2010) Blue Luminescence of ZnO Nanoparticles Based on Non-Equilibrium Processes: Defect Origins and Emission Controls.
Advanced Functional Materials, 20, 561-572. http://dx.doi.org/10.1002/adfm.200901884

[16]   Law, M., Greene, L.E., Johnson, J.C., Saykally, R. and Yang, P.D. (2005) Nanowire Dye-Sensitized Solar Cells. Nature Materials, 4, 455-459.
http://dx.doi.org/10.1038/nmat1387

[17]   Xu, C.K., Chun, J.W., Kim, D.E., Kim, J., Chon, B. and Joo, T. (2007) Electrical Properties and Near Band Edge Emission of Bi-Doped ZnO Nanowires. Applied Physics Letters, 90, Article ID: 083113.
http://dx.doi.org/10.1063/1.2431715

[18]   Yao, Y.F., Tu, C.G., Chang, T.W., Chen, H.T., Weng, C.M., Su, C.Y., Hsieh, C., Liao, C.H., Kiang, Y.W. and Yang, C.C. (2015) Growth of Highly Conductive Ga-Doped ZnO Nanoneedles. ACS Applied Materials & Interfaces, 7, 10525-10533.
http://dx.doi.org/10.1021/acsami.5b02063

[19]   Ahmad, M., Sun, H. and Zhu, J. (2011) Enhanced Photoluminescence and Field-Emission Behavior of Vertically Well Aligned Arrays of In-Doped ZnO Nanowires. ACS Applied Materials & Interfaces, 3, 1299-1305.
http://dx.doi.org/10.1021/am200099c

[20]   Yuan, G.D., Zhang, W.J., Jie, J.S., Fan, X., Tang, J.X., Shafiq, I., Ye, Z.Z., Lee, C.S. and Lee, S.T. (2008) Tunable n-Type Conductivity and Transport Properties of Ga-Doped ZnO Nanowire Arrays. Advanced Materials, 20, 168-173.
http://dx.doi.org/10.1002/adma.200701377

[21]   Onwona-Agyeman, B., Nakao, M., Kohno, T., Liyanage, D., Murakam, K.I. and Kitaoka, T. (2013) Preparation and Characterization of Sputtered Aluminum and Gallium Co-Doped ZnO Films as Conductive Substrates in Dye-Sensitized Solar Cells. Chemical Engineering Journal, 219, 273-277. http://dx.doi.org/10.1016/j.cej.2013.01.006

[22]   Du, S.F., Liu, H. and Chen, Y. (2009) Large-Scale Preparation of Porous Ultrathin Ga-Doped ZnO Nanoneedles from 3D Basic Zinc Carbonate Superstructures. Nanotechnology, 20, Article ID: 085611.
http://dx.doi.org/10.1088/0957-4484/20/8/085611

[23]   Yoo, J., Lee, C., Joo Doh, Y.H., Jung, S. and Yi, G.C. (2009) Modulation Doping in ZnO Nanorods for Electrical Nanodevice Applications. Applied Physics Letters, 94, Article ID: 223117.
http://dx.doi.org/10.1063/1.3148666

[24]   Wang, H., Baek, S., Song, J., Lee, J. and Lim, S. (2008) Microstructural and Optical Characteristics of Solution-Grown Ga-Doped ZnO Nanorod Arrays. Nanotechnology, 19, Article ID: 075607.
http://dx.doi.org/10.1088/0957-4484/19/7/075607

[25]   Wang, H., Wang, H.B., Yang, F.J., Chen, Y., Zhang, C., Yang, C.P., Qi, L. and Wong, S.P. (2006) Structure and Magnetic Properties of Zn1-xCoxO Single-Crystalline Nanorods Synthesized by a Wet Chemical Method. Nanotechnology, 17, 4312-4316.
http://dx.doi.org/10.1088/0957-4484/17/17/005

[26]   Duan, J.X., Wang, H., Wang, H.B., Zhang, J., Wu, S. and Wang, Y. (2012) Mn-Doped ZnO Nanotubes: From Facile Solution Synthesis to Room Temperature Ferromagnetism. CrystEngComm, 14, 1330-1336.
http://dx.doi.org/10.1039/C1CE06221B

[27]   Wang, H., Chen, Y., Wang, H.B., Zhang, C., Yang, F.J., Duan, J.X., Yang, C.P., Xu, Y.M., Zhou, M.J. and Li, Q. (2007) High Resolution Transmission Electron Microscopy and Raman Scattering Studies of Room Temperature Ferromagnetic Ni-Doped ZnO Nanocrystal. Applied Physics Letters, 90, Article ID: 052505.

[28]   Zhou, H., Fang, G.J., Liu, N. and Zhao, X.Z. (2011) Effects of Thermal Annealing on the Performance of Al/ZnO Nanorods/Pt Structure Ultraviolet Photodetector. Materials Science and Engineering B, 176, 740-744.
http://dx.doi.org/10.1016/j.mseb.2011.03.003

[29]   Wagner, C.D., Riggs, W.M., Davis, L.E., Monlder, J.I. and Muilenberg, G. E. (1979) In Handbook of X-Ray Photoelectron Spectroscopy. Perkin-Elmer Corporation, Eden Prarie, 171-174.

[30]   Bae, S.Y., Na, C.W., Kang, J.H. and Park, J. (2005) Comparative Structure and Optical Properties of Ga-, In-, and Sn- Doped ZnO Nanowires, Synthesized via Thermal Evaporation. The Journal of Physical Chemistry B, 109, 2526-2531.
http://dx.doi.org/10.1021/jp0458708

[31]   Li, G.R., Lu, X.H., Su, C.Y. and Tong, Y.X. (2008) Low-Temperature Growth and Characterization of Cl-Doped ZnO Nanowire Arrays. Journal of Physical Chemistry, 112, 2927-2933.

[32]   Zhou, M.J., Zhu, J.H., Jiao, Y., Rao, Y.Y., Hark, S., Liu, Y., Peng, L.M. and Li, Q. (2009) Optical and Electrical Properties of Ga-Doped ZnO Nanowire Arrays on Conducting Substrates. Journal of Physical Chemistry, 113, 8945-8947.

[33]   Mott, N.F. (1974) Metal-Insulator Transitions. Taylor and Francis, London.

[34]   Matsui, H., Saeki, H., Tabata, H. and Kawai, T. (2003) Role of Ga for Co-Doping of Ga with N in ZnO Films. Japanese Journal of Applied Physics, 42, 5494-5499.
http://dx.doi.org/10.1143/JJAP.42.5494

[35]   Yang, P.Y., Wang, H., Wang, X.N., Zhang, J. and Jiang, Y. (2010) Optical and Electrical Properties of Ga-Doped ZnO Nanorod Arrays Fabricated by Catalyst-Free Thermal Evaporation. Proceedings of the 3rd International Nanoelectronics Conference, Hong Kong, 3-8 January 2010, 1187-1188.
http://dx.doi.org/10.1109/inec.2010.5424956

[36]   Shin, K.S., Lee, K.H., Lee, H.H., Choi, D. and Kim, S.W. (2010) Enhanced Power Conversion Efficiency of Inverted Organic Solar Cells with a Ga-Doped ZnO Nanostructured Thin Film Prepared Using Aqueous Solution. Journal of Physical Chemistry C, 114, 15782-15785.
http://dx.doi.org/10.1021/jp1013658

[37]   Zhang, Q.F., Dandeneau, C.S., Zhou, X.Y. and Cao, G.Z. (2009) ZnO Nanostructures for Dye-Sensitized Solar Cells. Advanced Materials, 21, 4087-4108.
http://dx.doi.org/10.1002/adma.200803827

 
 
Top