[1] Green, E.J., Roesh Jr., F.A., Smith, A.F.M. and Strawderman, W.E. (1994) Bayes Estimation for the Three Parameter Weibull Distribution with Tree Diameter Data. Biometrics, 50, 254-269.
[2] Adamidis, K. and Loukas, S. (1998) A Lifetime Distribution with Decreasing Failure Rate. Statistics & Probability Letters, 39, 35-42.
[3] Marshall, A.W. and Olkin, I. (1997) A New Method for Adding a Parameter to a Family of Distributions with Application to the Exponential and Weibull Families. Biometrika, 84, 641-652. http://dx.doi.org/10.1093/biomet/84.3.641
[4] Adamidis, K., Dimitrakopoulou, T. and Loukas, S. (2005) On a Generalization of the Exponential-Geometric Distribution. Statistics & Probability Letters, 73, 259-269.
[5] Kus, C. (2007) A New Lifetime Distribution. Computational Statistics & Data Analysis, 51, 4497-4509. http://dx.doi.org/10.1016/j.csda.2006.07.017
[6] Souza, W.A., Morais, A.L. and Cordeiro, G.M. (2010) The Weibull-Geometric Distribution. Journal of Statistical Computation and Simulation, 81, 645-657. http://dx.doi.org/10.1080/00949650903436554
[7] Barreto-Souza, W. (2011) The Weibull-Geometric Distribution. Journal of Statistical Computation and Simulation, 81, 645-657. http://dx.doi.org/10.1080/00949650903436554
[8] Hamedani, G.G. and Ahsanullah, M. (2011) Characterizations of Weibull-Geometric Distribution. Journal of Statistical Theory and Applications, 10, 581-590.
[9] Balakrishnan, N. and Sandhu, R.A. (1995) A Simple Simulation Algorithm for Generating Progressively Type-II Censored Samples. The American Statistician, 49, 229-230.
[10] Balakrishnan, N. and Aggarwala, R. (2000) Progressive Censoring: Theory, Methods, and Applications. Birkhauser, Boston. http://dx.doi.org/10.1007/978-1-4612-1334-5
[11] Gilks, W.R., Richardson, S. and Spiegelhalter, D.J. (1996) Markov Chain Monte Carlo in Practices. Chapman and Hall, London.
[12] Gamerman, D. (1997) Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference. Chapman and Hall, London.
[13] Geman, S. and Geman, D. (1984) Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images. IEEE Transactions on Pattern Analysis and Mathematical Intelligence, 6, 721-741. http://dx.doi.org/10.1109/TPAMI.1984.4767596
[14] Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H. and Teller, E. (1953) Equations of State Calculations by Fast Computing Machines. Journal Chemical Physics, 21, 1087-1091. http://dx.doi.org/10.1063/1.1699114
[15] Hastings, W.K. (1970) Monte Carlo Sampling Methods Using Markov Chains and Their Applications. Biometrika, 57, 97-109. http://dx.doi.org/10.1093/biomet/57.1.97
[16] Gelfand, A.E. and Smith, A.F.M. (1990) Sampling Based Approach to Calculating Marginal Densities. Journal of the American Statistical Association, 85, 398-409. http://dx.doi.org/10.1080/01621459.1990.10476213
[17] Efron, B. and Tibshirani, R.J. (1993) An Introduction to the Bootstrap. Chapman and Hall, New York. http://dx.doi.org/10.1007/978-1-4899-4541-9
[18] Efron, B. (1982) The Jackknife, the Bootstrap and Other Resampling Plans. CBMS-NSF Regional Conference Series in Applied Mathematics, Phiadelphia, 38. http://dx.doi.org/10.1137/1.9781611970319