OJFD  Vol.5 No.4 , December 2015
Nonlinear Vortex Structures in Obliquely Rotating Fluid
ABSTRACT
In this paper, we find a new large scale instability which appears in obliquely rotating flow with the small scale turbulence, generated by external force with small Reynolds number. The external force has no helicity. The theory is based on the rigorous method of multi-scale asymptotic expansion. Nonlinear equations for instability are obtained in the third order of the perturbation theory. In this article, we explain in detail the nonlinear stage of the instability and we find the nonlinear periodic vortices and the vortex kinks of Beltrami type.

Cite this paper
Kopp, M. , Tur, A. and Yanovsky, V. (2015) Nonlinear Vortex Structures in Obliquely Rotating Fluid. Open Journal of Fluid Dynamics, 5, 311-321. doi: 10.4236/ojfd.2015.54032.
References
[1]   Grinspen, H.P. (1990) The Theory of Rotating Fluids. Brookline Press, Brooklyn, MA.

[2]   Roberts P.H. and Soward, A.M., Eds. (1978) Rotating Fluids in Geophysics. Acad. Press Inc., London.

[3]   Clarke, C. and Carswell, B. (2007) Principles of Astrophysical Fluid Dynamics. Cambridge University Press, Cambridge, UK.
http://dx.doi.org/10.1017/CBO9780511813450

[4]   Vallis, G.K. (2010) Atmospheric and Oceanic Fluid Dynamics. Cambridge University Press, Cambridge, MA.

[5]   Abramowicz, M.A., Lanza, A., Spigel, E.A. and Szuszkiewicz, E. (1992) Vortices on Accretion Disks. Nature, 356, 41-43.
http://dx.doi.org/10.1038/356041a0

[6]   Brandt, P.N., Scharmer, G.B., Ferguson, S., Shine, R.A., Tarbell, T.D. and Title, A.M. (1988) Vortex Flow in the Solar Photosphere. Nature, 335, 238-240.
http://dx.doi.org/10.1038/335238a0

[7]   Dritschel, G. and Legras, B. (1993) Modeling Oceanic and Atmospheric Vortices. Physics Today, 46, 44.
http://dx.doi.org/10.1063/1.881375

[8]   Moffat, H.K. (1978) Magnetic Field Generation in Electrically Conducting Fluids. Cambridge University Press, Cambridge, UK.

[9]   Moiseev, S.S., Sagdeev, R.Z., Tur, A.B., Khomenko, G.A. and Yanovsky, V.V. (1983) Theory of Large-Scale Structures in Hydrodynamic Turbulence. ZHETF, 58, 1149.

[10]   Moiseev, S.S., Rutkiewicz, P.B., Tur, A.B. and Yanovsky, V.V. (1988) Spiral Vortex Dynamo in Turbulent Convection. ZHETF, 67, 294.

[11]   Loupian, E.A., Mazurov, A.A., Rutkiewicz, P.B. and Tur, A.B. (1992) Generation of Large-Scale Eddies as a Result of the Spiral Turbulence Convective Nature. ZHETF, 75, 833.

[12]   Khomenko, G.A., Moiseev, S.S. and Tur, A.V. (1991) The Hydrodynamic Alpha-Effect in a Compressible Fluid. Journal of Fluid Mechanics, 225, 355-369.
http://dx.doi.org/10.1017/S0022112091002082

[13]   Levina, G.V., Moiseev, S.S. and Rutkevich, P.B. (2000) Hydrodynamic Alpha-Effect in a Convective System. Advances in Fluid Mechanics, 25, 111-162.

[14]   Frisch, U., She, Z.S. and Sulem, P.L. (1987) Large-Scale Flow Driven by the Anisotropic Kinetic Alpha Effect. Physica D: Nonlinear Phenomena, 28, 382-392.
http://dx.doi.org/10.1016/0167-2789(87)90026-1

[15]   Tur, A.V. and Yanovsky, V.V. (2013) Non Linear Vortex Structures in Stratified Fluid Driven by Small-Scale Helical Force. Open Journal of Fluid Dynamics, 3, 64-74.
http://dx.doi.org/10.4236/ojfd.2013.32009

[16]   Kitchatinov, L.L., Rudiger, G. and Khomenko, G. (1994) Large-Scale Vortices in Rotating Stratified Disks. Astronomy and Astrophysics, 287, 320-324.

[17]   Gradshteyn, I.S. and Ryzhik, I.M. (1974) Tables of Integrals, Sums, Series and Products. Academic Press, San Diego, San Francisco, New York, Boston, London, Sydney, Tokyo.

 
 
Top