On the Fractal Mechanism of Interrelation Between the Genesis, Size and Composition of Atmospheric Particulate Matters in Different Regions of the Earth

Author(s)
Vitaliy D Rusov^{*},
Radomir Ilic,
Radojko Jacimovic,
Vladimir N Pavlovich,
Yuriy A Bondarchuk,
Vladimir N. Vaschenko,
Tatiana N Zelentsova,
Margarita E Beglaryan,
Elena P Linnik,
Vladimir P Smolyar,
Sergey I Kosenko,
Alla A Gudyma

ABSTRACT

Experimental data from the National Air Surveillance Network of Japan from 1974 to 1996 and from inde-pendent measurements performed simultaneously in the regions of Ljubljana (Slovenia), Odessa (Ukraine) and the Ukrainian “Academician Vernadsky” Antarctic station (64^{o}15W; 65^{o}15S), where the air elemental composition was determined by the standard method of atmospheric particulate matter (PM) collection on nucleopore filters and subsequent neutron activation analysis, were analyzed. Comparative analysis of dif-ferent pairs of atmospheric PM element concentration data sets, measured in different regions of the Earth, revealed a stable linear (on a logarithmic scale) correlation, showing a power law increase of every atmos-pheric PM element mass and simultaneously the cause of this increase – fractal nature of atmospheric PM genesis. Within the framework of multifractal geometry we show that the mass (volume) of atmospheric PM elemental components has a log normal distribution, which on a logarithmic scale with respect to the random variable (elemental component mass) is identical to normal distribution. This means that the parameters of two-dimensional normal distribution with respect to corresponding atmospheric PM-multifractal elemental components measured in different regions, are a priory connected by equations of direct and inverse linear regression, and the experimental manifestation of this fact is the linear correlation between the concentra-tions of the same elemental components in different sets of experimental atmospheric PM data.

Experimental data from the National Air Surveillance Network of Japan from 1974 to 1996 and from inde-pendent measurements performed simultaneously in the regions of Ljubljana (Slovenia), Odessa (Ukraine) and the Ukrainian “Academician Vernadsky” Antarctic station (64

KEYWORDS

Atmospheric aerosols, Multifractal, Neutron activation analysis, South Pole, Ukrainian Antarctic station

Atmospheric aerosols, Multifractal, Neutron activation analysis, South Pole, Ukrainian Antarctic station

Cite this paper

nullV. Rusov, R. Ilic, R. Jacimovic, V. Pavlovich, Y. Bondarchuk, V. Vaschenko, T. Zelentsova, M. Beglaryan, E. Linnik, V. Smolyar, S. Kosenko and A. Gudyma, "On the Fractal Mechanism of Interrelation Between the Genesis, Size and Composition of Atmospheric Particulate Matters in Different Regions of the Earth,"*Atmospheric and Climate Sciences*, Vol. 1 No. 3, 2011, pp. 120-133. doi: 10.4236/acs.2011.13014.

nullV. Rusov, R. Ilic, R. Jacimovic, V. Pavlovich, Y. Bondarchuk, V. Vaschenko, T. Zelentsova, M. Beglaryan, E. Linnik, V. Smolyar, S. Kosenko and A. Gudyma, "On the Fractal Mechanism of Interrelation Between the Genesis, Size and Composition of Atmospheric Particulate Matters in Different Regions of the Earth,"

References

[1] Maenhaut, W.; Zoller, W.H. Determination of the chemical composition of the South Pole aerosol by instrumental neutron activation analysis. J. Radioanal. Chem. 1977, 37, 637-650.

[2] Pushkin, S.G.; Mihaylov, V.A. Comparative Neutron Activation Analysis: Study of Atmospheric Aerosols; Nauka, Siberian Department: Novosibirsk, 1989.

[3] Raes, F.; van Dingenen, R.; Vignati, E.; Wilson, J.; Putaud, J.P.; Seinfeld J.H.; Adams, P. Formation and cycling of aerosols in the global troposphere. Atmos. Environ. 2000, 34, 4215-4240.

[4] Rusov, V.D.; Glushkov, A.V.; Vaschenko, V.N. Astrophysical Model of the Earth Global Climate; Naukova Dumka: Kiev, 2003 (in Russian).

[5] Figen, Var; Yasushi Narita; Shigeru Tanaka. The concentration, trend and seasonal variation of metals in the atmosphere in 16 Japanese cities shown by the results of National Air Surveillance Network (NASN) from 1974 to 1996. Atmos. Environ. 2000, 34, 2755-2770.

[6] Brownlee, K.A. Statistical Theory and Methodology in Science and Engineering; Ed. John Wiley & Sons: New York, 1965.

[7] Bendat, J.S.; Piersol, A.G. Random Data: Analysis and Measurement Procedures; Ed. John Wiley & Sons: New York, 1986.

[8] Schroeder, M. Fractals, Chaos, Power Laws: Minutes from Infinite Paradise; Ed. W. Freeman and Company: New York, 2000.

[9] Witten, T.A.; Sander, L.M. Diffusion-limited aggregation: kinetic critical phenomenon. Phys. Rev. Lett. 1981, 47, 1400-1403.

[10] Zubarev, A.Yu.; Ivanov, A.O. Fractal structure of colloid aggregate. Reports of Russian Academy of Sci. 2002, 383, 472-477.

[11] Maenhaut, W.; Francos, F.; Cafmeyer, J. The “Gent” Stacked Filter Unit (SFU) Sampler for Collection of Atmospheric Aerosols in Two Size Fractions: Description and Instructions for Installation and Use. Report No.NAHRES-19, IAEA: Vienna, 1993, pp. 249-263.

[12] Hopke, P.K.; Hie, Y.; Raunemaa, T.; Biegalski, S.; Landsberger, S.; Maenhaut, W.; Artaxo, P.; Cohen, D. Characterization of the Gent stacked filter unit PM10 Sampler. Aerosol Sci. Tech. 1997, 27, 726-735.

[13] Ja?imovi?, R.; Lazaru, A.; Mihajlovi?, D;, Ili?, R;, Stafilov, T. Determination of major and trace elements in some minerals by k0?instrumental neutron activation analysis. J. Radioanal. Nucl. Chem. 2002, 253, 427-434.

[14] HYPERMET-PC V5.0, User’s Manual; Institute of Isotopes: Budapest, Hungary, 1997.

[15] Kayzero/Solcoi? ver. 5a. User’s Manual for Reactor-neutron Activation Analysis (NAA) Using the k0?Standardization Method; DSM Research: Geleen, Netherlands, 2003.

[16] Cronover, R.M., Introduction to Fractals and Chaos; Jones and Bartlett Publishers, 1995.

[17] Mandelbrot, B.B. The fractal geometry of nature. Updated and Augmented; W.H. Freeman and Company: New York, 2002.

[18] Feder, J. Fractals; Plenum Press: New York, 1988.

[19] Bozhokin, S.V.; Parshin, D.A. Fractals and Multifractals; Scientific Publishing Centre "Regular and Chaotic Dynamics": Moscow-Izhevsk, 2001 (in Russian).

[20] Lai, F.S.; Friedlander, S.K.; Pich, J.; Hidy, G.M. The self-preserving particle size distribution for Brownian coagulation in the free-molecular regime. J. Colloid Interf. Sci. 1972, 39, 395-405.

[21] Raes, F.; Wilson, J.; van Dingenen, R. Aerosol dynamics and its implication for the global aerosol climatology. In Aerosol Forcing of Climate; Charson, R.J., Heintzenberg, J., Eds.; John Wiley & Sons: New York, 1995.

[22] Feller, W. An Introduction to Probability Theory and its Applications; John Wiley ? Sons: New York, 1971.

[23] Bote, R.; Julen, R.; Kolb, M. Aggregation of Clusters. In Fractals in Physics; Pietronero, L., Tosatti, E., Eds.; North-Holland :Amsterdam, 1986, pp. 353-359.

[1] Maenhaut, W.; Zoller, W.H. Determination of the chemical composition of the South Pole aerosol by instrumental neutron activation analysis. J. Radioanal. Chem. 1977, 37, 637-650.

[2] Pushkin, S.G.; Mihaylov, V.A. Comparative Neutron Activation Analysis: Study of Atmospheric Aerosols; Nauka, Siberian Department: Novosibirsk, 1989.

[3] Raes, F.; van Dingenen, R.; Vignati, E.; Wilson, J.; Putaud, J.P.; Seinfeld J.H.; Adams, P. Formation and cycling of aerosols in the global troposphere. Atmos. Environ. 2000, 34, 4215-4240.

[4] Rusov, V.D.; Glushkov, A.V.; Vaschenko, V.N. Astrophysical Model of the Earth Global Climate; Naukova Dumka: Kiev, 2003 (in Russian).

[5] Figen, Var; Yasushi Narita; Shigeru Tanaka. The concentration, trend and seasonal variation of metals in the atmosphere in 16 Japanese cities shown by the results of National Air Surveillance Network (NASN) from 1974 to 1996. Atmos. Environ. 2000, 34, 2755-2770.

[6] Brownlee, K.A. Statistical Theory and Methodology in Science and Engineering; Ed. John Wiley & Sons: New York, 1965.

[7] Bendat, J.S.; Piersol, A.G. Random Data: Analysis and Measurement Procedures; Ed. John Wiley & Sons: New York, 1986.

[8] Schroeder, M. Fractals, Chaos, Power Laws: Minutes from Infinite Paradise; Ed. W. Freeman and Company: New York, 2000.

[9] Witten, T.A.; Sander, L.M. Diffusion-limited aggregation: kinetic critical phenomenon. Phys. Rev. Lett. 1981, 47, 1400-1403.

[10] Zubarev, A.Yu.; Ivanov, A.O. Fractal structure of colloid aggregate. Reports of Russian Academy of Sci. 2002, 383, 472-477.

[11] Maenhaut, W.; Francos, F.; Cafmeyer, J. The “Gent” Stacked Filter Unit (SFU) Sampler for Collection of Atmospheric Aerosols in Two Size Fractions: Description and Instructions for Installation and Use. Report No.NAHRES-19, IAEA: Vienna, 1993, pp. 249-263.

[12] Hopke, P.K.; Hie, Y.; Raunemaa, T.; Biegalski, S.; Landsberger, S.; Maenhaut, W.; Artaxo, P.; Cohen, D. Characterization of the Gent stacked filter unit PM10 Sampler. Aerosol Sci. Tech. 1997, 27, 726-735.

[13] Ja?imovi?, R.; Lazaru, A.; Mihajlovi?, D;, Ili?, R;, Stafilov, T. Determination of major and trace elements in some minerals by k0?instrumental neutron activation analysis. J. Radioanal. Nucl. Chem. 2002, 253, 427-434.

[14] HYPERMET-PC V5.0, User’s Manual; Institute of Isotopes: Budapest, Hungary, 1997.

[15] Kayzero/Solcoi? ver. 5a. User’s Manual for Reactor-neutron Activation Analysis (NAA) Using the k0?Standardization Method; DSM Research: Geleen, Netherlands, 2003.

[16] Cronover, R.M., Introduction to Fractals and Chaos; Jones and Bartlett Publishers, 1995.

[17] Mandelbrot, B.B. The fractal geometry of nature. Updated and Augmented; W.H. Freeman and Company: New York, 2002.

[18] Feder, J. Fractals; Plenum Press: New York, 1988.

[19] Bozhokin, S.V.; Parshin, D.A. Fractals and Multifractals; Scientific Publishing Centre "Regular and Chaotic Dynamics": Moscow-Izhevsk, 2001 (in Russian).

[20] Lai, F.S.; Friedlander, S.K.; Pich, J.; Hidy, G.M. The self-preserving particle size distribution for Brownian coagulation in the free-molecular regime. J. Colloid Interf. Sci. 1972, 39, 395-405.

[21] Raes, F.; Wilson, J.; van Dingenen, R. Aerosol dynamics and its implication for the global aerosol climatology. In Aerosol Forcing of Climate; Charson, R.J., Heintzenberg, J., Eds.; John Wiley & Sons: New York, 1995.

[22] Feller, W. An Introduction to Probability Theory and its Applications; John Wiley ? Sons: New York, 1971.

[23] Bote, R.; Julen, R.; Kolb, M. Aggregation of Clusters. In Fractals in Physics; Pietronero, L., Tosatti, E., Eds.; North-Holland :Amsterdam, 1986, pp. 353-359.