[1] Angstrom, A. 1929. On the atmospheric transmission of sun radiation and on dust in the air, Geogr. Ann., 11, pp. 156-166.
[2] Volz, F. E. 1959. Photometer mit Selen-Photoelement zur spektralen Messung der Sonnenstrahlung und zur Bestimmung der Wellenlaengenabhaengigkeit de Dunsttruebung, Arch. Meteorol. Geophys. Bioklin, B10, pp. 100- 131.
[3] Twitty, J. T. 1975. The inversion of aureole measurements to derive aerosol size distributions, J. Atmos. Sci., 32, 584-591.
[4] Kaufman, Y. J., Gitelson, A. and Karnieli, A. et al., 1994. Size distribution and scattering phase function of aerosol particles retrieved from sky brightness measurements, J. Geophys. Res., 99, pp. 10341-10345.
[5] Nakajima, T., Tonna, G. and Rao, R. et al., 1996. Use of sky brightness measurements from ground for remote sensing of particlulate polydispersions, Appl. Opt., 35, pp. 2672-2686.
[6] Highwood, E.J., Kinnersley, R.P., 2006.When smoke gets in our eyes: The multiple impacts of atmospheric black carbon on climate, air quality and health. Environment International, 32, 560-566.
[7] Reddy, M.S., Venkataraman, C., 2000. Atmospheric optical and radiative effects of anthropogenic aerosol constituents from India. Atmos. Environ. 34, 4511-4523.
[8] Babu and Moorthy, 2001. S.S. Babu and K.K. Moorthy, Anthropogenic impact on aerosol black carbon mass concentration at a tropical coastal station: a case study. Curr. Sci. 81 9 (2001), pp. 1208-1214.
[9] Latha, K.M., Badrinath, K.V.S., 2005.Seasonal variation of black carbon aerosols and total aerosol mass concentrations over urban environment in India. Atmospheric Environment 39, 4129-4141.