WJM  Vol.5 No.12 , December 2015
Effects of Radiations and Heat Source/Sink on a Casson Fluid Flow over Nonlinear Stretching Sheet
ABSTRACT
The present study deals with the flow over a nonlinearly stretching sheet of Casson fluid with the effects of radiation and heat source/sink. The Casson fluid model is used to characterize the non-Newtonian fluid behaviour. With the help of justified similarity transformations the governing equations were reduced to couple nonlinear ordinary differential equations. The effective numerical technique Keller Box method is used to solve these equations. The variations in velocity, temperature profiles were presented with the various values of nonlinear stretching parameter n and Casson parameter β. The nature of Skinfriction and Local nusselt number has presented. Effects of radiation and heat source/sink on temperature profiles have been discussed.

Cite this paper
Sumalatha, C. and Bandari, S. (2015) Effects of Radiations and Heat Source/Sink on a Casson Fluid Flow over Nonlinear Stretching Sheet. World Journal of Mechanics, 5, 257-265. doi: 10.4236/wjm.2015.512024.
References
[1]   Crane, L.J. (1970) Flow past a Stretching Plate. Zeitschrift für Angewandte Mathematik und Physik, 21, 645-647.
http://dx.doi.org/10.1007/BF01587695

[2]   Wang, C.Y. (1984) The Three-Dimensional Flow Due to a Stretching Flat Surface. Physics of Fluids, 27, 1915-1917.
http://dx.doi.org/10.1063/1.864868

[3]   Andersson, H.I. (1992) MHD Flow of a Viscoelastic Fluid past a Stretching Surface. Acta Mechanica, 95, 227-230.
http://dx.doi.org/10.1007/BF01170814

[4]   Gupta, P.S. and Gupta, A.S. (1977) Heat and Mass Transfer on a Stretching Sheet with Suction or Blowing. The Canadian Journal of Chemical Engineering, 55, 744-746.
http://dx.doi.org/10.1002/cjce.5450550619

[5]   Vajravelu, K. (2001) Viscous Flow over a Nonlinearly Stretching Sheet. Applied Mathematics and Computation, 124, 281-288.
http://dx.doi.org/10.1016/S0096-3003(00)00062-X

[6]   Raptis, A. and Perdikis, C. (2006) Viscous Flow over a Non-Linearly Stretching Sheet in the Presence of a Chemical Reaction and Magnetic Field. International Journal of Non-Linear Mechanics, 41, 527-529.
http://dx.doi.org/10.1016/j.ijnonlinmec.2005.12.003

[7]   Cortell, R. (2007) Viscous Flow and Heat Transfer over a Nonlinearly Stretching Sheet. Applied Mathematics and Computation, 184, 864-873.
http://dx.doi.org/10.1016/j.amc.2006.06.077

[8]   Eerdunbuhe and Temuerchaolu (2012) Approximate Solution of the Magneto-Hydrodynamic Flow over a Nonlinear Stretching Sheet. Chinese Physics B, 21, Article ID: 035201.
http://dx.doi.org/10.1088/1674-1056/21/3/035201

[9]   Ganji, D., Bararnia, H., Soleimani, S. and Ghasemi, E. (2009) Analytical Solution of the Magneto-Hydrodynamic Flow over a Nonlinear Stretching Sheet. Modern Physics Letters B, 23, 2541.
http://dx.doi.org/10.1142/S0217984909020692

[10]   Mukhopadhyay, S. (2013) Casson Fluid Flow and Heat Transfer over a Nonlinearly Stretching Surface. Chinese Physics B, 22, Article ID: 074701.
http://dx.doi.org/10.1088/1674-1056/22/7/074701

[11]   Pramanic, S. (2014) Casson Fluid Flow and Heat Transfer Past an Exponentially Porous Stretching Surface in Presence of Thermal Radiation. Ain Shams Engineering Journal, 5, 205-212.
http://dx.doi.org/10.1016/j.asej.2013.05.003

[12]   Bhattacharyya, K. (2013) MHD Stagnation-Point Flow of Casson Fluid and Heat Transfer over a Stretching Sheet with Thermal Radiation. Journal of Thermodynamics, 2013, Article ID: 169674.
http://dx.doi.org/10.1155/2013/169674

[13]   Mustafa, M., Hayat, T., Pop, I. and Aziz, A. (2011) Unsteady Boundary Layer Flow of a Casson Fluid Due to an Impulsively Started Moving Flat Plate. Heat Transfer, 40, 563-576.

[14]   Nadeem, S., Haq, R.U. and Lee, C. (2012) MHD Flow of a Casson Fluid over an Exponentially Shrinking Sheet. Scientia Iranica, 19, 1550-1553.
http://dx.doi.org/10.1016/j.scient.2012.10.021

[15]   Bhattacharyya, K., Hayat, T. and Alsaedi, A. (2013) Analytic Solution For Magnetohydrodynamic Boundary Layer Flow of Casson Fluid over a Stretching/Shrinking Sheet with Wall Mass Transfer. Chinese Physics B, 22, Article ID: 024702.
http://dx.doi.org/10.1088/1674-1056/22/2/024702

[16]   Mabood, F., Khan, W.A. and Ismail, A.I.M. (2015) MHD Boundary Layer Flow and Heat Transfer of Nanofluids over a Nonlinear Stretching Sheet: A Numerical Study. Journal of Magnetism and Magnetic Materials, 374, 569-576.
http://dx.doi.org/10.1016/j.jmmm.2014.09.013

[17]   Behrouz, R., Syed Tauseef, M.-D. and Ahmet, Y. (2011) Solution to the MHD Flow over a Non-Linear Stretching Sheet Homotopy Perturbation Method. Science China Physics, Mechanics & Astronomy, 54, 342-345.
http://dx.doi.org/10.1007/s11433-010-4180-1

[18]   Fredrickson, A.G. (1964) Principles and Applications of Rheology. Prentice-Hall, Englewood Cliffs.

[19]   Mustafa, M., Hayat, T., Pop, I. and Aziz, A. (2011) Unsteady Boundary Layer Flow of a Casson Fluid Due to an Impulsively Started Moving Flat Plate. Heat Transfer—Asian Research, 40, 563-576.
http://dx.doi.org/10.1002/htj.20358

[20]   Hayat, T., Hussain, Q. and Javed, T. (2009) The Modified Decomposition Method and Pade Approximation for the MHD Flow over a Non-Linear Stretching Sheet. Nonlinear Analysis: Real World Applications, 10, 966-973.
http://dx.doi.org/10.1016/j.nonrwa.2007.11.020

[21]   Hady, F.M., Ibrahim, F.S., Abdel-Gaied, S.M. and Eid, M.R. (2012) Radiation Effect on Viscous Flow of a Nanofluid and Heat Transfer over a Nonlinearly Stretching Sheet. Nanoscale Research Letters, 7, 229.
http://dx.doi.org/10.1186/1556-276X-7-229

[22]   Mukhopadhyay, S., Bhattacharyya, K. and Hayat, T. (2013) Exact Solutions for the Flow of Casson Fluid over a Stretching Surface with Transpiration and Heat Transfer Effects. Chinese Physics B, 22, Article ID: 114701.
http://dx.doi.org/10.1088/1674-1056/22/11/114701

[23]   Hayat, T., Nawaz, M., Sajid, M. and Asghar, S. (2009) The Effect of Thermal Radiation on the Flow of a Second Grade Fluid. Computers & Mathematics with Applications, 58, 369-379.
http://dx.doi.org/10.1016/j.camwa.2009.01.040

[24]   Liao, S.J. (1992) The Proposed Homotopy Analysis Technique for the Solution of Nonlinear Problems. PhD Thesis, Shanghai Jiao Tong University, Shanghai.

[25]   Ibrahim, W. and Shanker, B. (2014) Magnetohydrodynamic Boundary Layer Flow and Heat Transfer of a Nano Fluid over Non-Isothermal Stretching Sheet. Journal of Heat Transfer, 136, Article ID: 051701.
http://dx.doi.org/10.1115/1.4026118

[26]   Nandeppanavar, M.M., Vajravelu, K. and Subhas Abel, M. (2011) Heat Transfer in MHD Viscoelastic Boundary Layer Flow over a Stretching Sheet with Thermal Radiation and Non-Uniform Heat Source/Sink. Communications in Nonlinear Science and Numerical Simulation, 16, 3578-3590.
http://dx.doi.org/10.1016/j.cnsns.2010.12.033

[27]   Bhattacharyya, K. (2011) Effects of Radiation and Heat Source/Sink on Unsteady MHD Boundary Layer Flow and Heat Transfer over a Shrinking Sheet with Suction/Injection. Frontiers of Chemical Science and Engineering, 5, 376-384.
http://dx.doi.org/10.1007/s11705-011-1121-0

[28]   Abd El-Aziz, M. (2009) Radiation Effect on the Flow and Heat Transfer over an Unsteady Stretching Sheet. International Communications in Heat and Mass Transfer, 36, 521-524.
http://dx.doi.org/10.1016/j.icheatmasstransfer.2009.01.016

[29]   Hossain, M.A., Alim, M.A. and Rees, D.A.S. (1999) The Effect of Radiation on Free Convection from a Porous Vertical Plate. International Journal of Heat and Mass Transfer, 42, 181-191.
http://dx.doi.org/10.1016/S0017-9310(98)00097-0

[30]   Keller, H.B. (1971) A New Difference Scheme for Parabolic Problems. In: Hubbard, B., Ed., Numerical Solutions of Partial Differential Equations, Vol. II, Academic Press, New York, 327-350.

[31]   Sarif, N.M., Salleha, M.Z. and Nazar, R. (2013) Numerical Solution of Flow and Heat Transfer over a Stretching Sheet with Newtonian Heating Using the Keller Box Method. Procedia Engineering, 53, 542-554.
http://dx.doi.org/10.1016/j.proeng.2013.02.070

 
 
Top