APM  Vol.5 No.14 , December 2015
On 2 - 3 Matrix Chevalley Eilenberg Cohomology
Abstract: The main objective of this paper is to provide the tool rather than the classical adjoint representation of Lie algebra; which is essential in the conception of the Chevalley Eilenberg Cohomology. We introduce the notion of representation induced by a 2 - 3 matrix. We construct the corresponding Chevalley Eilenberg differential and we compute all its cohomological groups.
Cite this paper: Dongho, J. , Duebe-Abi, E. and Yotcha, S. (2015) On 2 - 3 Matrix Chevalley Eilenberg Cohomology. Advances in Pure Mathematics, 5, 835-849. doi: 10.4236/apm.2015.514078.

[1]   Chevalley, C. and Eilenberg, S. (1948) Cohomology Theory of Lie Groups and Lie Algebras. Transactions of the American Mathematical Society, 63, 85-124.

[2]   Nijenhuis, A. and Richardson, R.W. (1967) Deformation of Lie Algebra Structures. Journal of Mathematics and Mechanics, 17, No. 1.

[3]   Hochschild, G., Kostant, B. and Rosenberg, A. (1962) Differential Forms On Regular Affine Algebras. Transactions of the American Mathematical Society, 102, 383-408.

[4]   Goze, M. (1986) Perturbations of Lie Algebra Structures. In: Hazewinkel, M. and Gerstenhaber, M., Eds., Deformation Theory of Lie Algebra and Structures and Application, NATO ASI Series, Vol. 247, Springer, Netherlands, 265-355.

[5]   Hefferon, J. (2001) Linear Algebra. Saint Michaels College Colchester, Vermont.

[6]   Giarlet, P. (1998) Introduction à l’analyse numrique matricielle et l’optimisation. DUMOD.