OPJ  Vol.5 No.12 , December 2015
Design of Ultra-Low Loss Highly Nonlinear Dispersion Flattened Octagonal Photonic Crystal Fibers
Abstract: In this study, Octagonal Photonic Crystal Fiber (O-PCF) structures are designed for different air filling fractions with fixed pitch length of 2.2 μm. The light propagating characteristics of PCF structures such as effective refractive index, confinement loss, chromatic dispersion mode effective area and nonlinear coefficient are numerically analyzed. The simulation results show that the fibers have dispersion flattened, ultra-low loss highly nonlinear nature in the wavelength region 1.3 μm to 1.7 μm.
Cite this paper: Krishna, G. , Prasannan, G. , Sudheer, S. and Pillai, V. (2015) Design of Ultra-Low Loss Highly Nonlinear Dispersion Flattened Octagonal Photonic Crystal Fibers. Optics and Photonics Journal, 5, 335-343. doi: 10.4236/opj.2015.512032.

[1]   Knight, J.C. (2003) Photonic Crystal Fibres. Nature, 424, 847-851.

[2]   Knight, J.C., Birks, T.A., Russell, P.St.J. and Atkin, D.M. (1996) All-Silica Single-Mode Optical Fiber with Photonic Crystal cladding. Optics Letters, 21, 1547-1549.

[3]   Knight, J.C., Broeng, J., Birks, T.A. and Russell, P.St.J. (1998) Photonic Band Gap Guidance in Optical Fibers. Science, 282, 1476-1478.

[4]   Cregan, R.F., Mangan, B.J., Knight, J.C., Birks, T.A., Russell, P.S.J., Roberts, P.J. and Allan, D.C. (1999) Single-Mode Photonic Band Gap Guidance of Light in Air. Science, 285, 1537-1539.

[5]   Arriaga, J., Knight, J.C. and Russell, P.St.J. (2004) Modeling the Propagation of Light in Photonic Crystal Fibers. Physica D: Nonlinear Phenomena, 189, 100-106.

[6]   Ranka, J.K., Windeler, R.S. and Stentz, A.J. (2000) Visible Continuum Generation in Air-Silica Microstructure Optical Fibers with Anomalous Dispersion at 800 nm. Optics Letters, 25, 25-27.

[7]   Renversez, G., Nicolet, A., Kuhlmey, B., Guenneau, S., Felbacq, D., Argyros, A. and Leon-Saval, S. (2005) Foundations of Photonic Crystal Fibres. World Scientific.

[8]   Chen, M., Yang, S.G., Yin, F.F., Chen, H.W. and Xie, S.Z. (2008) Design of a New Type High Birefringence Photonic Crystal Fiber. Optoelectronics Letters, 4, 19-22.

[9]   Birks, T.A., Knight, J.C. and Russell, P.St.J. (1997) Endlessly Single-Mode Photonic Crystal Fiber. Optics Letters, 22, 961-963.

[10]   Wadsworth, W.J., Ortigosa-Blanch, A., Knight, J.C., Birks, T.A., Man, T.P.M. and Russell, P.St.J. (2002) Supercontinuum Generation in Photonic Crystal Fibers and Optical Fiber Tapers: A Novel Light Source. Journal of the Optical Society of America B, 19, 2148-2155.

[11]   Knight, J.C., Arriaga, J., Birks, T.A., Ortigosa-Blanch, A., Wadsworth, W.J. and Russell, P.St.J. (2000) Anomalous Dispersion in Photonic Crystal Fiber. IEEE Photonics Technology Letters, 12, 807-809.

[12]   Coen, S., Chau, A.H.L., Leonhardt, R., Harvey, J.D., Knight, J.C., Wadsworth, W.J. and Russell, P.St.J. (2001) White-Light Supercontinuum Generation with 60-ps Pump Pulses in a Photonic Crystal Fiber. Optics Letters, 26, 1356-1358.

[13]   Yablonovitch, E. and Gmitter, T.J. (1989) Photonic Band Structure: The Face-Centered-Cubic Case. Physical Review Letters, 63, 1950.

[14]   Ho, K.M., Chan, C.T. and Soukoulis, C.M. (1990) Existence of a Photonic Gap in Periodic Dielectric Structures. Physical Review Letters, 65, 3152.

[15]   Joannopoulos, J.D., Johnson, S.G., Winn, J.N. and Meade, R.D. (2011) Photonic Crystals: Molding the Flow of Light. Princeton University Press.

[16]   Prather, D.W., Shi, S., Murakowski, J., Schneider, G.J., Sharkawy, A., Chen, C., Miao, B.L. and Martin, R. (2007) Self-Collimation in Photonic Crystal Structures: A New Paradigm for Applications and Device Development. Journal of Physics D: Applied Physics, 40, 2635.

[17]   Hoque, M.N., Sayeem, A. and Akter, N. (2010) Octagonal Photonic Crystal Fibers: Application to Ultra-Flattened Dispersion. Australian Journal of Basic and Applied Sciences, 4, 2274-2279.

[18]   Ademgil, H. and Haxha, S. (2011) Bending Insensitive Large Mode Area Photonic Crystal Fiber. Optik-International Journal for Light and Electron Optics, 122, 1950-1956.

[19]   Mortensen, N.A. (2002) Effective Area of Photonic Crystal Fibers. Optics Express, 10, 341-348.