Numerical Simulation of Single Bubble Deformation in Straight Duct and 90° Bend Using Lattice Boltzmann Method

Show more

References

[1] Grace, J.R. (1973) Shapes and Velocities of Bubbles Rising in Infinite Liquids. Transactions of the Institution of Chemical Engineers, 51, 116-120.

[2] Bhaga, D. and Weber, M.E. (1981) Bubbles in Viscous Liquids: Shapes, Wakes and Velocities. Journal of Fluid Mechanics, 105, 61-85.

http://dx.doi.org/10.1017/S002211208100311X

[3] Fan, L. and Tsuchiya, K. (1990) Bubble Wake Dynamics in Liquids and Liquid-Solid Suspensions. Butterworth-Heinemann, Oxford.

[4] Clift, R., Grace, J.R. and Weber, M.E. (1978) Bubbles, Drops and Particles. Academic Press, New York.

[5] Prosperetti, A. and Tryggvason, G. (2007) Computational Methods for Multiphase Flow. Cambridge University Press, Cambridge.

[6] Chen, L., Garimella, S.V., Reizes, J.A. and Leonardi, E. (1999) The Development of a Bubble Rising in a Viscous Liquid. Journal of Fluid Mechanics, 387, 61-96.

http://dx.doi.org/10.1017/S0022112099004449

[7] van Sint Annaland, M., Deen, N.G. and Kuipers, J.A.M. (2005) Numerical Simulation of Gas Bubbles Behaviour Using a Three-Dimensional Volume of Fluid Method. Chemical Engineering Science, 60, 2999-3011.

http://dx.doi.org/10.1016/j.ces.2005.01.031

[8] Ohta, M., Imura, T., Yoshida, Y. and Sussman, M. (2005) A Computational Study of the Effect of Initial Bubble Conditions on the Motion of a Gas Bubble Rising in Viscous Liquids. International Journal of Multiphase Flow, 31, 223-237.

http://dx.doi.org/10.1016/j.ijmultiphaseflow.2004.12.001

[9] Bonometti, T. and Magnaudet, J. (2006) Transition from Spherical Cap to Toroidal Bubbles. Physics of Fluids, 18, Article ID: 052102.

http://dx.doi.org/10.1063/1.2196451

[10] Feng, J. Q. (2007) A Spherical-Cap Bubble Moving at Terminal Velocity in a Viscous Liquid. Journal of Fluid Mechanics, 579, 347-371.

http://dx.doi.org/10.1017/S0022112007005319

[11] Hua, J., Stene, J.F. and Lin, P. (2008) Numerical Simulation of 3D Bubbles Rising in Viscous Liquids Using a Front Tracking Method. Journal of Computational Physics, 227, 3358-3382.

http://dx.doi.org/10.1016/j.jcp.2007.12.002

[12] Sukop M.C. and Thorne, D.T. (2006) Lattice Boltzmann Modeling: An Introduction for Geoscientists and Engineers. Springer, Berlin Heidelberg.

[13] Yu, D., Mei, R., Luo, L.S. and Shyy, W. (2003) Viscous Flow Computations with the Method of Lattice Boltzmann Equation. Progress in Aerospace Sciences, 39, 329-367.

http://dx.doi.org/10.1016/S0376-0421(03)00003-4

[14] Succi, S. (2001) The Lattice Boltzmann Equation: For Fluid Dynamics and Beyond. Oxford University Press, Oxford.

[15] He, X., Chen, S. and Zhang, R. (1999) A Lattice Boltzmann Scheme for Incompressible Multiphase Flow and its Application in Simulation of Rayleigh-Taylor Instability. Journal of Computational Physics, 152, 642-663.

http://dx.doi.org/10.1006/jcph.1999.6257

[16] He, X., Zhang, R., Chen, S. and Doolen, G.D. (1999) On the Three-Dimensional Rayleigh-Taylor Instability. Physics of Fluids, 11, 1143-1152.

http://dx.doi.org/10.1063/1.869984

[17] Jacqmin, D. (1999) Calculation of Two-Phase Navier-Stokes Flows Using Phase-Field Modeling. Journal of Computational Physics, 155, 96-127.

http://dx.doi.org/10.1006/jcph.1999.6332

[18] Lee, T. and Lin, C.L. (2005) A Stable Discretization of the Lattice Boltzmann Equation for Simulation of Incompressible Two-Phase Flows at High Density Ratio. Journal of Computational Physics, 206, 16-47.

http://dx.doi.org/10.1016/j.jcp.2004.12.001

[19] Lee, T. (2009) Effects of Incompressibility on the Elimination of Parasitic Currents in the Lattice Boltzmann Equation Method for Binary Fluids. Computers & Mathematics with Applications, 58, 987-994.

http://dx.doi.org/10.1016/j.camwa.2009.02.017

[20] Gupta, A. and Kumar, R. (2008) Lattice Boltzmann Simulation to Study Multiple Bubble Dynamics. International Journal of Heat and Mass Transfer, 51, 5192-5203.

http://dx.doi.org/10.1016/j.ijheatmasstransfer.2008.02.050

[21] Fakhari, A. and Rahimian, M.H. (2009) Simulation of an Axisymmetric Rising Bubble by a Multiple Relaxation Time Lattice Boltzmann Method. International Journal of Modern Physics B, 23, 4907-4932.

http://dx.doi.org/10.1142/S0217979209053965

[22] Amaya-Bower, L. and Lee, T. (2010) Single Bubble Rising Dynamics for Moderate Reynolds Number Using Lattice Boltzmann Method. Computers & Fluids, 39, 1191-1207.

http://dx.doi.org/10.1016/j.compfluid.2010.03.003

[23] Amaya-Bower, L. and Lee, T. (2011) Numerical Simulation of Single Bubble Rising in Vertical and Inclined Square Channel Using Lattice Boltzmann Method. Chemical Engineering Science, 66, 935-952.

http://dx.doi.org/10.1016/j.ces.2010.11.043

[24] Tölke, J., Freudiger, S. and Krafczyk, M. (2006) An Adaptive Scheme Using Hierarchical Grids for Lattice Boltzmann Multi-Phase Flow Simulations. Computers & Fluids, 35, 820-830.

http://dx.doi.org/10.1016/j.compfluid.2005.08.010

[25] Yu, Z., Yang, H. and Fan, L.S. (2011) Numerical Simulation of Bubble Interactions Using an Adaptive Lattice Boltzmann Method. Chemical Engineering Science, 66, 3441-3451.

http://dx.doi.org/10.1016/j.ces.2011.01.019

[26] Qian, Y.H. and Chen, S.Y. (2000) Dissipative and Dispersive Behaviors of Lattice-Based Models for Hydrodynamics. Physical Review E, 61, 2712.

http://dx.doi.org/10.1103/PhysRevE.61.2712

[27] Lee, T., Lin, C.L. and Chen, L.D. (2006) A Lattice Boltzmann Algorithm for Calculation of the Laminar Jet Diffusion Flame. Journal of Computational Physics, 215, 133-152.

http://dx.doi.org/10.1016/j.jcp.2005.10.021

[28] Lee, T. and Liu, L. (2010) Lattice Boltzmann Simulations of Micron-Scale Drop Impact on Dry Surfaces. Journal of Computational Physics, 229, 8045-8063.

http://dx.doi.org/10.1016/j.jcp.2010.07.007

[29] Zou, Q. and He, X. (1997) On Pressure and Velocity Boundary Conditions for the Lattice Boltzmann BGK Model. Physics of Fluids, 9, 1591-1598.

http://dx.doi.org/10.1063/1.869307

[30] Hua, J. and Lou, J. (2007) Numerical Simulation of Bubble Rising in Viscous Liquid. Journal of Computational Physics, 222, 769-795.

http://dx.doi.org/10.1016/j.jcp.2006.08.008