[1] Lanini, W.T. and Wertz, B.A. (2015) Velvetleaf. Penn State Extension.
http://extension.psu.edu/pests/weeds/weed-id/velvetleaf
[2] Koger, C.H., Bruce, L.M., Shaw, D.R. and Reddy, K.N. (2003) Wavelet Analysis of Hyperspectral Reflectance Data for Detecting Pitted Morning Glory (Ipomoea lacunosa) in Soybean (Glycine max). Remote Sensing Environment, 86, 108-119.
http://dx.doi.org/10.1016/S0034-4257(03)00071-3
[3] Smith, A.M. and Blackshaw, R.E. (2003) Weed-Crop Discrimination Using Remote Sensing: A Detached Leaf Experiment. Weed Technology, 17, 811-820.
http://dx.doi.org/10.1614/WT02-179
[4] Yang, C.C., Prasher, S.O. and Goel, P.K. (2004) Differentiation of Crop and Weeds by Decision-Tree Analysis of Multi-Spectral Data. Transactions of the ASAE, 47, 873-879.
http://dx.doi.org/10.13031/2013.16084
[5] Iqbal, J., Owens, P.R. and Ali., I. (2006) Application of Remote Sensing Data to Assess Weed Infestation in Cotton. Agricultural Journal, 1, 186-191.
[6] Gómez-Casero, M.T., Castillejo-González, I.L. and García-Ferrer, A. (2010) Spectral Discrimination of Wild Oat and Canary Grass in Wheat Fields for Less Herbicide Application. Agronomy for Sustainable Development, 30, 689-699.
http://dx.doi.org/10.1051/agro/2009052
[7] Nieuwenhuizen, A.T., Hofstee, J.W., van de Zande, J.C., Meuleman, J. and van Henten, E.J. (2010) Classification of Sugar Beet and Volunteer Potato Reflection Spectra with a Neural Network and Statistical Discriminant Analysis to Select Discriminative Wavelengths. Computers Electronics in Agriculture, 73, 146-153.
http://dx.doi.org/10.1016/j.compag.2010.05.008
[8] de Castro, A.I., Jurado-Expósito, M., Gómez-Casero, M.T. and López-Granados, F. (2012) Applying Neural Networks to Hyperspectral and Multispectral Field Data for Discrimination of Cruciferous Weeds in Winter Crops. Science World Journal, Article ID: 630390.
http://dx.doi.org/10.1100/2012/630390
[9] Lamb, D.W. and Brown, R.B. (2001) Remote-Sensing and Mapping of Weeds in Crops. Journal of Agricultural Engneering Research, 78, 117-125.
http://dx.doi.org/10.1006/jaer.2000.0630
[10] Goel, P.K., Prasher, S.O., Patel, R.M., Smith, D.L. and Di Tommaso, A. (2002) Use of Airborne Multi-Spectral Imagery for Weed Detection in Field Crops. Transactions of American Society of Agricultural Engineers, 45, 443-449.
[11] Gibson, K.D., Dirks, R., Medlin, C.R. and Johnston, L. (2004) Detection of Weed Species in Soybean Using Multispectral Digital Images. Weed Technology, 18, 742-749.
http://dx.doi.org/10.1614/WT-03-170R1
[12] Gausman, H. (1985) Plant Leaf Optical Properties. Texas Tech Press, Lubbock.
[13] Fernández-Delgado, M., Cernadas, E., Barro, S. and Amorim, D. (2014) Do We Need Hundreds of Classifiers to Solve Real World Classification Problems? Journal of Machine Learning Research, 15, 3133-3181.
[14] Gislason, P.O., Benediktsson, J.A. and Sveinsson, J.R. (2006) Random Forests for Land Cover Classification. Pattern Recognition Letters, 27, 294-300.
http://dx.doi.org/10.1016/j.patrec.2005.08.011
[15] Strobl, C., Malley, J. and Tutz, G. (2009) An Introduction to Recursive Partitioning: Rationale, Application and Characteristics of Classification and Regression Trees, Bagging and Random Forests. Psychological Methods, 14, 323-348.
http://dx.doi.org/10.1037/a0016973
[16] Goldstein, B.A., Polley, E.C. and Briggs, F.B.S. (2011) Random Forest for Genetic Association Studies. Applications in Genetics and Molecular Biology, 10, 1-34.
http://dx.doi.org/10.2202/1544-6115.1691
[17] Ok, A.O., Akar, O. and Gungor, O. (2012) Evaluation of Random Forest Method for Agricultural Crop Classification. European Journal of Remote Sensing, 45, 421-432.
[18] Breiman, L. (2001) Random Forests. Machine Learning, 45, 5-32.
http://dx.doi.org/10.1023/A:1010933404324
[19] US Geological Survey (2015) Frequently Asked Questions about the Landsat Missions.
http://landsat.usgs.gov/best_spectral_bands_to_use.php
[20] Digital Globe (2010) The Benefits of the Eight Spectral Bands of WorldView 2.
http://global.digitalglobe.com/sites/default/files/DG-8SPECTRAL-WP_0.pdf
[21] Digital Globe (2014) WorldView 3 Data Sheet.
https://dg-cms-uploads-production.s3.amazonaws.com/uploads/document/file/95/DG_WorldView3_DS_forWeb_0.pdf
[22] Lehnert, L.W., Meyer, H. and Bendix, J. (2015) Hsdar: Manage, Analyse and Simulate Hyperspectral Data in R. R Package Version 0.3.0.
https://cran.r-project.org/web/packages/hsdar/index.html
[23] Hothorn, T., Buehlmann, P., Dudoit, S., Molinaro, A. and van der Laan, M. (2006) Survival Ensembles. Biostatistics, 7, 355-373.
http://dx.doi.org/10.1093/biostatistics/kxj011
[24] Congalton, R. and Green, K. (2009) Assessing the Accuracy of Remotely Sensed Data: Principles and Practices. 2nd Edition, CRC/Taylor & Francis, Boca Raton, 183 p.
[25] Hothorn, T., Hornik, K. and Zeileis, A. (2006) Unbiased Recursive Partitioning: A Conditional Inference Framework. Journal of Computational and Graphical Statistics, 15, 651-674.
http://dx.doi.org/10.1198/106186006X133933
[26] Strobl, C., Boulesteix, A.L., Zeileis, A. and Hothorn, T. (2007) Bias in Random Forest Variable Importance Measures: Illustrations, Sources and a Solution. BMC Bioinformatics, 8, 25.
http://dx.doi.org/10.1186/1471-2105-8-25
[27] Strobl, C., Boulesteix, A.L., Kneib, T., Augustin, T. and Zeileis, A. (2008) Conditional Variable Importance for Random Forests. BMC Bioinformatics, 9, 307.
http://www.biomedcentral.com/1471-2105/9/307
http://dx.doi.org/10.1186/1471-2105-9-307