[1] Piccolo, L. and Henry, C.R. (2000) Reactivity of Metal Nanoclusters: Nitric Oxide Adsorption and CO+NO Reaction on Pd/MgO Model Catalysts. Applied Surface Science, 162-163, 670-678.
http://dx.doi.org/10.1016/S0169-4332(00)00267-1
[2] Xu, C., Oh, W.S., Liu, G., Kim, D.Y. and Goodman, D.W. (1997) Characterization of Metal Clusters (Pd and Au) Supported on Various Metal Oxide Surfaces (MgO and TiO2). Journal of Vacuum Science & Technology A, 15, 1261.
http://dx.doi.org/10.1116/1.580604
[3] Florez, E., Mondragón, F., Truong, T.N. and Fuentealba, P. (2007) Density Functional Theory Characterization of the Formation of Copper Clusters on Fs and Centers on a MgO Surface. Surface Science, 601, 656-664.
http://dx.doi.org/10.1016/j.susc.2006.10.040
[4] Wang, Y., Florez, E., Mondragón, F. and Truong, T.N. (2006) Effects of Metal-Support Interactions on the Electronic Structures of Metal Atoms Adsorbed on the Perfect and Defective MgO(100) Surfaces. Surface Science, 600, 1703-1713.
http://dx.doi.org/10.1016/j.susc.2005.12.062
[5] Giordano, L., Di Valentin, C., Pacchioni, G. and Goniakowski, J. (2005) Formation of Pd Dimers at Regular and Defect Sites of the MgO(100) Surface: Cluster Model Calculations. The Journal of Chemical Physics, 309, 41-47.
[6] Inntam, C., Moskaleva, L.A., Neyman, K.M. and Nasluzov, V.A. (2006) Adsorption of Dimers and Trimers of Cu, Ag, and Au on Regular Sites and Oxygen Vacancies of the MgO(001) Surface: A Density Functional study Using Embedded Cluster Models. Applied Physics A, 82, 181-189.
http://dx.doi.org/10.1007/s00339-005-3352-8
[7] Brune, H. (1998) Microscopic View of Epitaxial Metal Growth: Nucleation and Aggregation. Surface Science Reports, 31, 125-229.
http://dx.doi.org/10.1016/S0167-5729(99)80001-6
[8] Cinquini, F., Di Valentin, C., Finazzi, E., Giordano, L. and Pacchioni, G. (2007) Theory of Oxides Surfaces, Interfaces and Supported Nano-Clusters. Theoretical Chemistry Accounts, 117, 827-845.
http://dx.doi.org/10.1007/s00214-006-0204-3
[9] Fernandez, S., Markovits, A. and Minot, C. (2008) Adsorption of the First Row of Transition Metals on the Perfect and Defective MgO(100) Surface. Chemical Physics Letters, 463, 106-111.
http://dx.doi.org/10.1016/j.cplett.2008.08.053
[10] Markovits, A., Paniagua, J.C., Lopez, N., Minot, C. and Illas, F. (2003) Adsorption Energy and Spin State of First-Row Transition Metals Adsorbed on MgO(100). Physical Review B, 67, 115417.
http://dx.doi.org/10.1103/PhysRevB.67.115417
[11] Neyman, K.M., Innatam, C., Nasluzov, V.A., Kosarev, R. and Rosch, N. (2004) Adsorption of d-Metal Atoms on the Regular MgO(001) Surface: Density Functional Study of Cluster Models Embedded in an Elastic Polarizable Environment. Applied Physics A, 78, 823-828.
http://dx.doi.org/10.1007/s00339-003-2437-5
[12] Markovits, A., Skalli, M.K., Minot, C., Pacchioni, G., Lopez, N. and Illas, F. (2001) The Competition between Chemical Bonding and Magnetism in the Adsorption of Atomic Ni on MgO(100). The Journal of Chemical Physics, 115, 8172.
http://dx.doi.org/10.1063/1.1407824
[13] Sousa, C., de Graaf, C., Lopez, N., Harrison, N.M. and Illas, F. (2004) Ab Initio Theory of Magnetic Interactions at Surfaces. Journal of Physics: Condensed Matter, 16, S2557-S2574.
http://dx.doi.org/10.1088/0953-8984/16/26/027
[14] Paulus, U.A., Endruschat, U., Feldmeyer, G.J., Schimidt, T.J., Bonnemann, H. and Behm, R.J. (2000) New PtRu Alloy Colloids as Precursors for Fuel Cell Catalysts. Journal of Catalysis, 195, 383-393.
http://dx.doi.org/10.1006/jcat.2000.2998
[15] Jalili, S., Isfahani, A.Z. and Habibpour, R. (2012) Atomic Oxygen Adsorption on Au (100) and Bimetallic Au/M (M = Pt and Cu) Surfaces. Computational and Theoretical Chemistry, 989, 18-26.
http://dx.doi.org/10.1016/j.comptc.2012.02.033
[16] Sicolo, S. and Pacchioni, G. (2008) Charging and Stabilization of Pd Atoms and Clusters on an Electron-Rich MgO Surface. Surface Science, 602, 2801-2807.
http://dx.doi.org/10.1016/j.susc.2008.07.005
[17] Kukovecz, á., Pótári, G., Oszkó, A., Kónya, Z., Erdöhelyi, A. and Kiss, J. (2011) Probing the Interaction of Au, Rh and Bimetallic Au-Rh Clusters with the TiO2 Nanowire and Nanotube Support. Surface Science, 605, 1048-1055.
http://dx.doi.org/10.1016/j.susc.2011.03.003
[18] Rassoul, M., Gaillard, F., Garbowski, E. and Primet, M. (2001) Synthesis and Characterisation of Bimetallic Pd-Rh/ Alumina Combustion Catalysts. Journal of Catalysis, 203, 232-242.
http://dx.doi.org/10.1006/jcat.2001.3328
[19] Ferrari, A.M. (1999) Pd and Ag Dimers and Tetramers Adsorbed at the MgO(001) Surface: A Density Functional Study. Physical Chemistry Chemical Physics, 1, 4655-4661.
http://dx.doi.org/10.1039/a904813h
[20] Shinkarenko, V.G., Anufrienko, V.F., Boreskov, G.K., Ione, K.G. and Yureva, T.M. (1975) Doklady Akademii Nauk SSSR, 223, 410.
[21] Neyman, K.M. and Illas, F. (2005) Theoretical Aspects of Heterogeneous Catalysis: Applications of Density Functional Methods. Catalysis Today, 105, 2-16.
http://dx.doi.org/10.1016/j.cattod.2005.04.006
[22] Nasluzov, V.A., Rivanenkov, V.V., Gordienko, A.B., Neyman, K.M., Birkenheuer, U. and Rösch, N. (2001) Cluster Embedding in an Elastic Polarizable Environment: Density Functional Study of Pd Atoms Adsorbed at Oxygen Vacancies of MgO(001). The Journal of Chemical Physics, 115, 8157.
http://dx.doi.org/10.1063/1.1407001
[23] Matveev, A.V., Neyman, K.M., Yudanov, I.V. and Rösch, N. (1999) Adsorption of Transition Metal Atoms on Oxygen Vacancies and Regular Sites of the MgO(001) Surface. Surface Science, 426, 123-139.
http://dx.doi.org/10.1016/S0039-6028(99)00327-1
[24] Berthier, G. (2001) Simulation of Ab Initio Results for Palladium and Rhodium Clusters by Tight-Binding Calculations. International Journal of Quantum Chemistry, 82, 26-33.
http://dx.doi.org/10.1002/1097-461X(2001)82:1<26::AID-QUA1018>3.0.CO;2-O
[25] Lombardi, J.R. and Davis, B. (2002) Periodic Properties of Force Constants of Small Transition-Metal and Lanthanide Clusters. Chemical Reviews, 102, 2431-2460.
http://dx.doi.org/10.1021/cr010425j
[26] Wu, Z.J. (2005) Theoretical Study of Transition Metal Dimer AuM (M = 3d, 4d, 5d Element). Chemical Physics Letters, 406, 24-28.
http://dx.doi.org/10.1016/j.cplett.2005.02.083
[27] Wu, Z.J. (2004) Density Functional Study OF the Second Row Transition Metal Dimmers. Chemical Physics Letters, 383, 251-255.
http://dx.doi.org/10.1016/j.cplett.2003.11.023
[28] Negreiros, F.R., Barcaro, G., Kuntová, Z., Rossi, G., Ferrando, R. and Fortunelli, A. (2011) Structures of AgPd Nanoclusters Adsorbed on MgO(100): A Computational Study. Surface Science, 605, 483-488.
http://dx.doi.org/10.1016/j.susc.2010.12.002
[29] Wang, M.Y., Liu, X.J., Meng, J. and Wu, Z.J. (2007) Interaction of H2 with Transition Metal Homonuclear Dimers Cu2, Ag2, Au2 and Heteronuclear Dimers PdCu, PdAg and PdAu. Journal of Molecular Structure: THEOCHEM, 804, 47-55.
http://dx.doi.org/10.1016/j.theochem.2006.10.007
[30] Gómez, T., Florez, E., Rodriguez, J.A. and Illas, F. (2010) Theoretical Analysis of the Adsorption of Late Transition-Metal Atoms on the (001) Surface of Early Transition-Metal Carbides. The Journal of Physical Chemistry C, 114, 1622-1626.
http://dx.doi.org/10.1021/jp910273z
[31] Die, D., Kuang, X.Y., Guo, J.J. and Zheng, B.X. (2009) First-Principle Study of AunFe (n = 1–7) Clusters. Journal of Molecular Structure: THEOCHEM, 902, 54-58.
http://dx.doi.org/10.1016/j.theochem.2009.02.009
[32] Chin, Y.H., King, D.L., Roh, H.S., Wang, Y. and Heald, S.M. (2006) Structure and Reactivity Investigations on Supported Bimetallic Au-Ni Catalysts Used for Hydrocarbon Steam Reforming. Journal of Catalysis, 244, 153-162.
http://dx.doi.org/10.1016/j.jcat.2006.08.016
[33] Liu, F.L., Zhao, Y.F., Li, X.Y. and Hao, F.Y. (2007) Ab Initio Study of the Structure and Stability of MnTln (M = Cu, Ag, Au; n = 1, 2) Clusters. Journal of Molecular Structure: THEOCHEM, 809, 189-194.
http://dx.doi.org/10.1016/j.theochem.2007.01.018
[34] Vesecky, S.M., Rainer, D.R. and Goodman, D.W. (1996) Basis for the Structure Sensitivity of the CO+NO Reaction on Palladium. Journal of Vacuum Science & Technology A, 14, 1457.
http://dx.doi.org/10.1116/1.579969
[35] Rainer, D.R., Vesecky, S.M., Koranne, M., Oh, W.S. and Goodman, D.W. (1997) The CO+NO Reaction over Pd: A Combined Study Using Single-Crystal, Planar-Model-Supported, and High-Surface-Area Pd/Al2O3Catalysts. Journal of Catalysis, 167, 234-241.
http://dx.doi.org/10.1006/jcat.1997.1571
[36] Viñes, F., Desikusumastuti, A., Staudt, T., Gorling, A., Libuda, J. and Neyman, K.N. (2008) A Combined Density-Functional and IRAS Study on the Interaction of NO with Pd Nanoparticles: Identifying New Adsorption Sites with Novel Properties. The Journal of Physical Chemistry C, 112, 16539-16549.
http://dx.doi.org/10.1021/jp804315c
[37] Grybos, R., Benco, L., Bucko, T. and Hafner, J. (2009) Interaction of NO Molecules with Pd Clusters: Ab Initio Density-Functional Study. Journal of Computational Chemistry, 30, 1910-1922.
http://dx.doi.org/10.1002/jcc.21174
[38] Abbet, S., Riedo, E., Brune, H., Heiz, U., Ferrari, A.-M., Giordano, L. and Pacchioni, G. (2001) Identification of Defect Sites on MgO(100) Thin Films by Decoration with Pd Atoms and Studying CO Adsorption Properties. Journal of the American Chemical Society, 123, 6172-6178.
http://dx.doi.org/10.1021/ja0157651
[39] Mineva, T., Alexiev, V., Lacaze-Dufaure, C., Sicilia, E., Mijoule, C. and Russo, N. (2009) Periodic Density Functional Study of Rh and Pd Interaction with the (100)MgO Surface. Journal of Molecular Structure: THEOCHEM, 903, 59-66.
http://dx.doi.org/10.1016/j.theochem.2009.01.025
[40] Lopez, N. and Illas, F. (1998) Ab Initio Modeling of the Metal-Support Interface: The Interaction of Ni, Pd, and Pt on MgO(100). The Journal of Physical Chemistry B, 102, 1430-1436.
http://dx.doi.org/10.1021/jp972626q
[41] D’Ercole, A., Giamello, E. and Pisani, C. (1999) Embedded-Cluster Study of Hydrogen Interaction with an Oxygen Vacancy at the Magnesium Oxide Surface. The Journal of Physical Chemistry B, 103, 3872-3876.
http://dx.doi.org/10.1021/jp990117d
[42] Abdel Halim, W.S., Abdel Aal, S. and Shalabi, A.S. (2008) CO Adsorption on Pd Atoms Deposited on MgO, CaO, SrO and BaO Surfaces: Density Functional Calculations. Thin Solid Films, 516, 4360-4365.
http://dx.doi.org/10.1016/j.tsf.2008.01.009
[43] Becke, A.D. (1993) Density-Functional Thermochemistry. III. The Role of Exact Exchange. The Journal of Chemical Physics, 98, 5648.
http://dx.doi.org/10.1063/1.464913
[44] Lee, C., Yang, W. and Parr, R.G. (1988) Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density. Physical Review B, 37, 785-789.
http://dx.doi.org/10.1103/PhysRevB.37.785
[45] Lopez, N., Illas, F., Rösch, N. and Pacchioni, G. (1999) Adhesion Energy of Cu Atoms on the MgO(001) Surface. The Journal of Chemical Physics, 110, 4873.
http://dx.doi.org/10.1063/1.478373
[46] Moreira, I.P.R., Illas, F. and Martin, R.L. (2002) Effect of Fock Exchange on the Electronic Structure and Magnetic Coupling in NiO. Physical Review B, 65, Article ID: 155102.
http://dx.doi.org/10.1103/PhysRevB.65.155102
[47] Siegbahn, P.E. and Crabtree, R.H. (1997) Mechanism of C-H Activation by Diiron Methane Monooxygenases: Quantum Chemical Studies. Journal of the American Chemical Society, 119, 3103-3113.
http://dx.doi.org/10.1021/ja963939m
[48] Illas, F., Moreira, I.P.R., Graaf, C. and Barone, V. (2000) Magnetic Coupling in Biradicals, Binuclear Complexes and Wide-Gap Insulators: A Survey of Ab Initio Wave Function and Density Functional Theory Approaches. Theoretical Chemistry Accounts, 104, 265-272.
http://dx.doi.org/10.1007/s002140000133
[49] Stevens, W., Krauss, M., Basch, H. and Jasien, P.G. (1992) Relativistic Compact Effective Potentials and Efficient, Shared-Exponent Basis Sets for the Third-, Fourth-, and Fifth-Row Atoms. Canadian Journal of Chemistry, 70, 612-630.
http://dx.doi.org/10.1139/v92-085
[50] Cundari, T.R. and Stevens, W.J. (1993) Effective Core Potential Methods for the Lanthanides. The Journal of Chemical Physics, 98, 5555.
http://dx.doi.org/10.1063/1.464902
[51] Larsen, G. (2000) A Performance Comparison between the CEP Effective Core Potential/Triple-Split Basis Set Approach and an All-Electron Computational Method with Emphasis on Small Ti and V Alkoxide Complexes. Canadian Journal of Chemistry, 78, 206-211.
http://dx.doi.org/10.1139/v99-225
[52] Henrich, V.E. and Cox, P.A. (1994) The Surface Science of Metal Oxides. Cambridge University Press, Cambridge.
[53] Grimes, R.W., Catlow, C.R.A. and Stoneham, A.M. (1989) Quantum-Mechanical Cluster Calculations and the Mott-Littleton Methodology. Journal of the Chemical Society, Faraday Transactions II: Molecular and Chemical Physics, 85, 485-495.
http://dx.doi.org/10.1039/f29898500485
[54] Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., et al. (1998) Gaussian 98. Gaussian Inc., Pittsburgh.
[55] Fuente, S.A., Ferullo, R.M., Domancich, N.F. and Castellani, N.J. (2011) Interaction of NO with Au Nanoparticles Supported on (100) Terraces and Topological Defects of MgO. Surface Science, 605, 81-88.
http://dx.doi.org/10.1016/j.susc.2010.10.003
[56] Giordano, L. and Pacchioni, G. (2005) Pd Nanoclusters at the MgO(100) Surface. Surface Science, 575, 197-209.
http://dx.doi.org/10.1016/j.susc.2004.11.024
[57] Silvia, A., Patricia, G., Ferullo, M. and Castellani, J. (2008) Adsorption of NO on Au Atoms and Dimers Supported on MgO(100): DFT Studies. Surface Science, 602, 1669-1676.
http://dx.doi.org/10.1016/j.susc.2008.02.037
[58] Yulikov, M., Sterrer, M., Heyde, M., Rust, H.-P., Risse, T., Freund, H.-J., Pacchioni, G. and Scagnelli, A. (2006) Binding of Single Gold Atoms on Thin MgO(001) Films. Physical Review Letters, 96, Article ID: 146804.
http://dx.doi.org/10.1103/PhysRevLett.96.146804
[59] Moseler, M., Häkkinen, H. and Landman, U. (2002) Supported Magnetic Nanoclusters: Soft Landing of Pd Clusters on a MgO Surface. Physical Review Letters, 89, Article ID: 176103.
http://dx.doi.org/10.1103/PhysRevLett.89.176103
[60] Xu, L., Henkelman, G., Campbell, C.T. and Jónsson, H. (2006) Pd Diffusion on MgO(100): The Role of Defects and Small Cluster Mobility. Surface Science, 600, 1351-1362.
http://dx.doi.org/10.1016/j.susc.2006.01.034
[61] Stirling, A., Gunji, I., Endow, A., Oumi, Y., Kubo, M. and Miyamoto, A. (1995) Γ-Point Density Functional Calculations on Theadsorption of Rhodium and Palladium Particles on MgO(001) Surface and Their Reactivity. Journal of the Chemical Society, Faraday Transactions, 93, 1175-1178.
http://dx.doi.org/10.1039/a604388g
[62] Giordano, L., Vitto, A.D., Pacchioni, G. and Ferrari, A.M. (2003) CO Adsorption on Rh, Pd and Ag Atoms Deposited on the MgO Surface: A Comparative Ab Initio Study. Surface Science, 540, 63-75.
http://dx.doi.org/10.1016/S0039-6028(03)00737-4
[63] Reed, A., Weinstock, R.B. and Weindhold, F. (1985) Natural Population Analysis. The Journal of Chemical Physics, 83, 735.
http://dx.doi.org/10.1063/1.449486
[64] Zhao, S., Ren, Y., Ren, Y., Wang, J. and Yin, W. (2011) Density Functional Study of NO Binding on Small AgnPdm (n + m ≤ 5) Clusters. Computational and Theoretical Chemistry, 964, 298-303.
http://dx.doi.org/10.1016/j.comptc.2011.01.009
[65] Dufaurea, C., Roques, J., Mijoule, C., Sicilia, E., Russo, N., Alexiev, V. and Mineva, T. (2011) A DFT Study of the NO Adsorption on Pdn (n = 1 - 4) Clusters. Journal of Molecular Catalysis A: Chemical, 341, 28-34.
http://dx.doi.org/10.1016/j.molcata.2011.03.020
[66] Giordano, L., Valentin, C.D., Goniakowski, J. and Pacchioni, G. (2004) Nucleation of Pd Dimers at Defect Sites of the MgO(100) Surface. Physical Review Letters, 92, Article ID: 096105.
http://dx.doi.org/10.1103/PhysRevLett.92.096105
[67] Zhang, W., Ge, Q. and Wang, L. (2003) Structure Effects on the Energetic, Electronic, and Magnetic Properties of Palladium Nanoparticles. The Journal of Chemical Physics, 118, 5793.
http://dx.doi.org/10.1063/1.1557179
[68] Kumar, V. and Kawazoe, Y. (2002) Icosahedral Growth, Magnetic Behavior, and Adsorbate-Induced Metal-Nonmetal Transition in Palladium Clusters. Physical Review B, 66, Article ID: 144413.
http://dx.doi.org/10.1103/PhysRevB.66.144413
[69] Yang, J.X., Cheng, F.W. and Guo, J.J. (2010) Density Functional Study of AunRh (n=1–8) Clusters. Physica B: Condensed Matter, 405, 4892-4896.
http://dx.doi.org/10.1016/j.physb.2010.09.029
[70] Bogicevic, A. and Jennison, D.R. (2002) Effect of Oxide Vacancies on Metal Island Nucleation. Surface Science, 515, L481-L486.
http://dx.doi.org/10.1016/S0039-6028(02)02024-1
[71] Efremenko, I. (2001) Implication of Palladium Geometric and Electronic Structures to Hydrogen Activation on Bulk Surfaces and Clusters. Journal of Molecular Catalysis A: Chemical, 173, 19-59.
http://dx.doi.org/10.1016/S1381-1169(01)00144-3
[72] Piccolo, L. and Henry, C.R. (2001) NO-CO Reaction Kinetics on Pd/MgO Model Catalysts: Morphology and Support Effects. Journal of Molecular Catalysis A: Chemical, 167, 181-190.
http://dx.doi.org/10.1016/S1381-1169(00)00505-7
[73] Yamaguchi, A. and Iglesia, E. (2010) Catalytic Activation and Reforming of Methane on Supported Palladium Clusters. Journal of Catalysis, 274, 52-63.
http://dx.doi.org/10.1016/j.jcat.2010.06.001
[74] Ramsier, R.D., Gao, H.N.Q., Lee, K.W., Nooji, O.W., Lefferts, L. and Yates, J.T. (1994) NO Adsorption and Thermal Behavior on Pd Surfaces. A Detailed Comparative Study. Surface Science, 320, 209-237.
http://dx.doi.org/10.1016/0039-6028(94)90310-7
[75] Tsai, M.H. and Hass, K.C. (1995) First-Principles Studies of NO Chemisorption on Rhodium, Palladium, and Platinum Surfaces. Physical Review B, 51, Article ID: 14616.
http://dx.doi.org/10.1103/PhysRevB.51.14616
[76] Pacchioni, G. (1993) Physisorbed and Chemisorbed CO2 at Surface and Step Sites of the MgO(100) Surface. Surface Science, 281, 207-219.
http://dx.doi.org/10.1016/0039-6028(93)90869-L
[77] Florez, E., Fuentealba, P. and Mondragón, F. (2008) Chemical Reactivity of Oxygen Vacancies on the MgO Surface: Reactions with CO2, NO2 and Metals. Catalysis Today, 133, 216-222.
http://dx.doi.org/10.1016/j.cattod.2007.12.087
[78] Sterrer, M., Yulikov, M., Risse, T., Freund, H.J., Carrasco, J., Illas, F., Valentin, C.D., Giordano, L., Pacchioni, G., Risse, T. and Freund, H.J. (2006) When the Reporter Induces the Effect: Unusual IR Spectra of CO on Au1/MgO(001)/ Mo(001). Angewandte Chemie International Edition, 45, 2633-2635.
http://dx.doi.org/10.1002/anie.200504473
[79] Grönbeck, H. and Broqvist, P. (2003) CO-Induced Modification of the Metal/MgO(100) Interaction. The Journal of Physical Chemistry B, 107, 12239-12243.
[80] Abbeta, S., Heizb, U., Ferraric, A.M., Giordanod, L., Valentin, C.D. and Pacchioni, G. (2001) Nano-Assembled Pd Catalysts on MgO Thin Films. Thin Solid Films, 400, 37-42.
http://dx.doi.org/10.1016/S0040-6090(01)01444-4
[81] Abdel Halim, W.S., Assem, M.M., Shalabi, A.S. and Soliman, K.A. (2009) CO Adsorption on Ni, Pd, Cu and Ag Deposited on MgO, CaO, SrO and BaO: Density Functional Calculations. Applied Surface Science, 255, 7547-7555.
http://dx.doi.org/10.1016/j.apsusc.2009.04.026
[82] Shalabi, A.S., Nour, E.M. and Abdel Halim, W.S. (2000) Characterization of van der Waals Interaction Potentials D4h and Td Configurations of He4. International Journal of Quantum Chemistry, 76, 10-22.
http://dx.doi.org/10.1002/(SICI)1097-461X(2000)76:1<10::AID-QUA2>3.0.CO;2-1