[1] WHO World Malaria Report 2014.
http://www.who.int/malaria/media/world_malaria_report_2014/en/
[2] Tuteja, R. (2007) Malaria—An Overview. FEBS Journal, 274, 4670-4679.
http://dx.doi.org/10.1111/j.1742-4658.2007.05997.x
[3] Wongsrichanalai, C., Pickard, A.L., Wernsdorfer, W.H. and Meshnick, S.R. (2002) Epidemiology of Drug-Resistant Malaria. The Lancet Infectious Diseases, 2, 209-218.
http://dx.doi.org/10.1016/S1473-3099(02)00239-6
[4] Joy, D., Feng, X., Mu, J., Furuya, T., Chotivanich, K., Krettl, A.U., Ho, M., Wang, A., White, N.J., Suh, E., Beerli, P. and Su, X. (2003) Early Origin and Recent Expansion of Plasmodium falciparum. Science, 300, 318-321.
http://dx.doi.org/10.1126/science.1081449
[5] Dorn, A., Vippagunta, S.R., Matile, H., Jaquet, C., Vennerstrom, J.L. and Ridley, R.G. (1998) An Assessment of Drug-Haematin Binding as a Mechanism for Inhibition of Haematin Polymerisation by Quinoline Antimalarials. Biochemical Pharmacology, 55, 727-736.
http://dx.doi.org/10.1016/S0006-2952(97)00510-8
[6] Banerjee, R., Liu, J., Beatty, W., Pelosof, L., Klemba, M. and Goldberg, D.E. (2002) Four Plasmepsins Are Active in the Plasmodium falciparum Food Vacuole, Including a Protease with an Active-Site Histidine. Proceedings of the National Academy of Sciences of the United States of America, 99, 990-995.
http://dx.doi.org/10.1073/pnas.022630099
[7] Egan, T.J., Ross, D.C. and Adams, P.A. (1994) Quinoline Anti-Malarial Drugs Inhibit Spontaneous Formation of β-Haematin (Malaria Pigment). FEBS Letters, 352, 54-57.
http://dx.doi.org/10.1016/0014-5793(94)00921-X
[8] Slater, A.F.G. and Cerami, A. (1992) Inhibition by Chloroquine of a Novel Haem Polymerase Enzyme Activity in Malaria Trophozoites. Nature, 355, 167-169.
http://dx.doi.org/10.1038/355167a0
[9] Pandey, A.V., Babbarwal, V.K., Okoyeh, J.N., Joshi, R.M., Puri, S.K., Singh, R.L. and Chauhan, V.S. (2003) Hemozoin Formation in Malaria: A Two-Step Process Involving Histidine-Rich Proteins and Lipids. BBRC, 308, 736-743.
http://dx.doi.org/10.1016/S0006-291X(03)01465-7
[10] Meshnick, S.R. (2002) Artemisinin: Mechanisms of Action, Resistance and Toxicity. International Journal for Parasitology, 13, 1655-1660.
http://dx.doi.org/10.1016/S0020-7519(02)00194-7
[11] Mongan, P.D., Capacchione, J., Karaian, J., Dubois, D., Keneally, R. and Sharma, P. (2002) Pyruvate Improves Redox Status and Decreases Indicators of Hepatic Apoptosis during Hemorrhagic Shock in Swine. American Journal of Physiology-Heart and Circulatory Physiology, 283, 1634-1644.
http://dx.doi.org/10.1152/ajpheart.01073.2001
[12] Basset, G.J.C., Quinlivan, E.P., Gregory, J.F. and Hanson, A.D. (2005) Folate Synthesis and Metabolism in Plants and
Prospects for Biofortification. Crop Science, 45, 449-453.
http://dx.doi.org/10.2135/cropsci2005.0449
[13] Myllykallio, H., Leduc, D., Filee, J. and Liebl, U. (2003) Life without Dihydrofolate Reductase FolA. Trends in Microbiology, 11, 220-223.
http://dx.doi.org/10.1016/S0966-842X(03)00101-X
[14] Ridley, R.G. (2002) Medical Need, Scientific Opportunity and the Drive for Antimalarial Drugs. Nature, 415, 686-693.
http://dx.doi.org/10.1038/415686a
[15] Fontaine, E., Ichas, F.O. and Bernardi, P.A. (1998) Ubiquinone-Binding Site Regulates the Mitochondrial Permeability Transition Pore. Journal of Biological Chemistry, 273, 25734-25740.
http://dx.doi.org/10.1074/jbc.273.40.25734
[16] Tielens, A.G.M. and Hellemond, J.J.V. (1998) The Electron Transport Chain in Anaerobically Functioning Eukaryotes. BBA Bioenergetics, 1365, 71-78.
http://dx.doi.org/10.1016/S0005-2728(98)00045-0
[17] Kroger, A. and Gwith, M.K. (1973) The Kinetics of the Redox Reactions of Ubiquinone Related to the Electron-Transport Activity in the Respiratory Chain. European Journal of Biochemistry, 34, 358-368.
http://dx.doi.org/10.1111/j.1432-1033.1973.tb02767.x
[18] Hunte, C., Birth, D. and Kao, W.C. (2014) Structural Analysis of Atovaquone Inhibited Cytochrome bc1 Complex Revels the Molecular Basis of Antimalarial Drug Action. Nature Communication, 5029, 1-11.
http://dx.doi.org/10.1038/ncomms5029
[19] Kessl, J.J., Lange, B.B., Merbitz, Z.T., Zwicker, K., Hill, P., Meunier, B., Hildur, P., lsdo, T., Hunte, C., Meshnick, S. and Trumpower, B.L. (2003) Molecular Basis for Atovaquone Binding to the Cytochrome bc1 Complex. Journal of Biological Chemistry, 278, 31312-31318.
http://dx.doi.org/10.1074/jbc.M304042200
[20] Zhang, Z., Huang, L., Shulmeister, V.M., Chi, Y., Kim, K.K., Hung, L., Croftsk, A.R., Berry, E.A. and Kim, S. (1998) Electron Transfer by Domain Movement in Cytochrome bc1. Nature, 392, 677-684.
http://dx.doi.org/10.1038/33612
[21] Nayek, S.K., Basumallick, S., Kanaujia, S.P., Sekhar, K., Ranganathan, K.R., Ananthalakshmi, V., Jeyaraman, G., Saralaya, S., Nagarajan, K. and Guru Row, T.N. (2013) Crystal Structures and Binding Studies of Atovaquone and Its Derivatives with Cytochrome bc1: A Molecular Basis for Drug Design. Crystal Engineering Communication, 15, 4871-4884.
[22] Kirkpatrick, S., Gelatt, C.D. and Vecchi, M.P. (1983) Optimization by Simulated Annealing. Science, 220, 671-680.
http://dx.doi.org/10.1126/science.220.4598.671
[23] Metropolis, N. and Ulam, S. (1949) The Monte Carlo Method. Journal of the American Statistical Association, 44, 335-341.
http://dx.doi.org/10.1080/01621459.1949.10483310
[24] Meng, E.C., Shoichet, B.K. and Kuntz, I.D. (1992) Automated Docking with Grid-Based Energy Evaluation. Journal of Computational Chemistry, 13, 505-524.
http://dx.doi.org/10.1002/jcc.540130412
[25] Solis, F.J. and Wets, R.J.B. (1981) Minimization by Random Search Techniques. Mathematics of Operations Research, 6, 19-30.
http://dx.doi.org/10.1287/moor.6.1.19
[26] Boschitsch, A.H. and Fenley, M.O. (2004) Hybrid Boundary Element and Finite Difference Method for Solving the Nonlinear Poisson—Boltzmann Equation. Journal of Computational Chemistry, 25, 935-955.
http://dx.doi.org/10.1002/jcc.20000
[27] Morris, G.M., Goodsell, D.S., Huey, R., Hart, W.E., Halliday, R.S., Belew, R.K. and Olson, A.J. (2001) Autodock Version 3.0.5. Scripps Research Institute, San Diego.
[28] Barragan, A.M., Crofts, A.R., Schulten, K and Solovyov, I.A. (2015) Identification of Ubiquinol Binding Motifs at the Q0—Site of the Cytochrome bc1 Complex. Journal of Physical Chemistry B, 119, 433-447.
http://dx.doi.org/10.1021/jp510022w