APM  Vol.5 No.14 , December 2015
Lp Polyharmonic Dirichlet Problems in the Upper Half Plane
Abstract: In this article, a class of Dirichlet problem with Lp boundary data for poly-harmonic function in the upper half plane is mainly investigated. By introducing a sequence of kernel functions called higher order Poisson kernels and a hierarchy of integral operators called higher order Pompeiu operators, we obtain a main result on integral representation solution as well as the uniqueness of the polyharmonic Dirichlet problem under a certain estimate.
Cite this paper: Pan, K. (2015) Lp Polyharmonic Dirichlet Problems in the Upper Half Plane. Advances in Pure Mathematics, 5, 828-834. doi: 10.4236/apm.2015.514077.

[1]   Aronszajn, N., Cresse, T. and Lipkin, L. (1983) Polyharmonic Functions, Oxford Math. Clarendon, Oxford.

[2]   Goursat, E. (1898) Sur I’équation ΔΔu = 0. Bulletin de la Société Mathématique de France, 26, 236-237.

[3]   Vekua, I.N. (1976) On One Method of Solving the First Biharmonic Boundary Value Problem and the Dirichlet Problem. American Mathematical Society Translations, 104, 104-111.

[4]   Begehr, H., Du, J. and Wang, Y. (2008) A Dirichlet Problem for Polyharmonic Functions. Annali di Matematica Pura ed Applicata, 187, 435-457.

[5]   Begehr, H. and Gaertner, E. (2007) A Dirichlet Problem for the Inhomogeneous Polyharmonic Equations in the Upper Half Plane. Georgian Mathematical Journal, 14, 33-52.

[6]   Verchota, G.C. (2005) The Biharmonic Neumann Problem in Lipschitz Domain. Acta Mathematica, 194, 217-279.

[7]   Du, Z. (2008) Boundary Value Problems for Higher Order Complex Differential Equations. Doctoral Dissertation, Freie Universität Berlin, Berlin.

[8]   Du, Z., Qian, T. and Wang, J.X. (2012) Polyharmonic Dirichlet Problem in Regular Domain: The Upper Half Plane. Journal of Differential Equations, 252, 1789-1812.

[9]   Stein, E.M. and Weiss, G. (1971) Introduction to Fourier Analysis on Euclidean Spaces. Princeton University Press, Princeton, New Jersey.

[10]   Garnett, J. (2007) Bounded Analytic Functions. Springer, New York.

[11]   Begehr, H. and Hile, G.N. (1997) A Hierarchy of Integral Operators. Rocky Mountain Journal of Mathematics, 27, 669-706.