[1] FAOSTAT (2013) Food and Agriculture Organization of the United Stated Nations (FAOSTAT). Helping to Build a World without Hunger.
http://faostat3.fao.org/
[2] Borland, A.M., Griffiths, H., Hartwell, J. and Smith, J.A. (2009) Exploiting the Potential of Plants with Crassulacean Acid Metabolism for Bioenergy Production on Marginal Lands. Journal of Experimental Botany, 60, 2879-2896.
http://www.ncbi.nlm.nih.gov/pubmed/19395392
http://dx.doi.org/10.1093/jxb/erp118
[3] Escalona, M., Samson, G., Borroto, C. and Desjardins, Y. (2003) Physiology of Effects of Temporary Immersion Bioreactors on Micropropagated Pineapple Plantlets. In Vitro Cellular & Developmental Biology-Plant, 39, 651-656.
http://dx.doi.org/10.1079/IVP2003473
[4] Almeida, W.A.B., Santana, G.S., Rodriguez, A.P.M. and Costa, M.A.P.C. (2002) Optimization of a Protocol for the Micropropagation of Pineapple. Revista Brasileira de Fruticultura, 24, 296-300.
http://ref.scielo.org/9s3jcj
http://dx.doi.org/10.1590/S0100-29452002000200005
[5] González-Olmedo, J.L., Fundora, Z., Molina, L.A., Abdulnour, J., Desjardins, Y. and Escalona, M. (2005) New Contributions to Propagation of Pineapple (Ananas comosus (L.) Merr.) in Temporary Immersion Bioreactors. In Vitro Cellular & Developmental Biology-Plant, 41, 87-90.
http://dx.doi.org/10.1079/IVP2004603
[6] Rodríguez, R., Becquer, R., Pino, Y., Rodríguez-Escriba, R.C. and López, D. (2013) Introduction of Pineapple Vitroplantas to Field Conditions in Collaboration with Farmers. Preliminary Results. Newsletter of the Pineapple Working Group, International Society for Horticultural Science, 20, 51-56.
[7] Rodriguez, R., Aragon, C.E., Escalona, M., Gonzalez-Olmedo, J.L. and Desjardins, Y. (2008) Carbon Metabolism in Leaves of Micropropagated Sugarcane during Acclimatization Phase. In Vitro Cellular & Developmental Biology-Plant, 44, 533-539.
http://dx.doi.org/10.1007/s11627-008-9142-1
[8] Yanes, E., González-Olmedo, J.L. and Rodríguez, R. (2000) A Technology of Acclimatization of Pineapple Vitroplants. Newsletter of the Pineapple Working Group, International Society for Horticultural Science, 15, 24-35.
[9] Gonzalez-Olmedo, J.L., Coll, F. and Nuñez, M. (2005) A Role for Brassinosteroids during Acclimatization of Pineapple Plantlets. Newsletter of the Pineapple Working Group, International Society for Horticultural Science, 12, 17-20.
[10] Villalobos, A., González, J., Santos, R. and Rodríguez, R. (2012) Morpho-Physiological Changes in Pineapple Plantlets [Ananas comosus (L.) merr.] during Acclimatization. Ciência e Agrotecnologia, 36, 624-630.
http://ref.scielo.org/s7dgk5
http://dx.doi.org/10.1590/S1413-70542012000600004
[11] Nievola, C.C., Kraus, J.E., Freschi, L., Sousa, B.M. and Mercier, H. (2005) Temperature Determines the Occurrence of CAM or C3 Photosynthesis in Pineapple Plantlets Grown in Vitro. In Vitro Cellular & Developmental Biology-Plant, 41, 832-837.
http://dx.doi.org/10.1079/IVP2005694
[12] Freschi, L., Rodrigues, M.A., Domingues, D.S., Purgatto, E., Van Sluys, M.A., Magalhaes, J.R., Kaiser, W.M. and Mercier, H. (2010) Nitric Oxide Mediates the Hormonal Control of Crassulacean Acid Metabolism Expression in Young Pineapple Plants. Plant Physiology, 152, 1971-1985.
http://www.ncbi.nlm.nih.gov/pubmed/20147491
http://dx.doi.org/10.1104/pp.109.151613
[13] Aragón, C., Carvalho, L., González-Olmedo, J.L., Escalona, M. and Amancio, S. (2012) The Physiology of ex Vitro Pineapple (Ananas comosus (L.) Merr. var MD-2) as CAM or C3 Is Regulated by the Environmental Conditions. Plant Cell Report, 31, 757-769.
http://www.ncbi.nlm.nih.gov/pubmed/22134875
http://dx.doi.org/10.1007/s00299-011-1195-7
[14] Aragón, C., Pascual, P., González-Olmedo, J.L., Escalona, M., Carvalho, L. and Amancio, S. (2013) The Physiology of ex Vitro Pineapple (Ananas comosus (L.) Merr. var MD-2) as CAM or C3 Is Regulated by the Environmental Conditions: Proteomic and Transcriptomic Profiles. Plant Cell Report, 32, 1807-1818.
http://www.ncbi.nlm.nih.gov/pubmed/23959598
http://dx.doi.org/10.1007/s00299-013-1493-3
[15] Bartholomew, D.P., Paul, R. and Rohrbach, K. (2003) The Pineapple. Botany, Production and Uses. CABI, Wallingford.
http://dx.doi.org/10.1079/9780851995038.0000
[16] Nelson, E.A. and Sage, R.F. (2008) Functional Constraints of CAM Leaf Anatomy: Tight Cell Packing Is Associated with Increased CAM Function across a Gradient of CAM Expression. Journal of Experimental Botany, 59, 1841-1850.
http://jxb.oxfordjournals.org/content/59/7/1841.abstract
http://dx.doi.org/10.1093/jxb/erm346
[17] Lüttge, U. (2010) Ability of Crassulacean Acid Metabolism Plants to Overcome Interacting Stresses in Tropical Environments. AoB Plants, 2010, 1-9.
http://www.ncbi.nlm.nih.gov/pubmed/22476063
http://dx.doi.org/10.1093/aobpla/plq005
[18] Prigge, M. and Guriérrez-Soto, M.V. (2014) Pineapple Photosynthesis and Leaf Sap pH as a Surrogate of CAM Performance in the Field. A Research Advance. Newsletter of the Pineapple Working Group, International Society for Horticultural Science, 21, 18-23.
[19] Escalona, M., Lorenzo, J.C., González, B., Daquinta, M., González, J.L., Desjardins, Y. and Borroto, C.G. (1999) Pineapple (Ananas comusus L. Merr) Micropropagation in Temporary Immersion Systems. Plant Cell Report, 18, 743-748.
http://dx.doi.org/10.1007/s002990050653
[20] Porra, R.J. (2002) The Chequered History of the Development and Use of Simultaneous Equations for the Accurate Determination of Chlorophylls a and b. Photosynthesis Research, 73, 149-156.
http://dx.doi.org/10.1023/A:1020470224740
[21] Herrera, A. (2009) Crassulacean Acid Metabolism and Fitness under Water Deficit Stress: If Not for Carbon Gain, What Is Facultative CAM Good for? Annals of Botany, 103, 645-653.
http://www.ncbi.nlm.nih.gov/pubmed/18708641
http://dx.doi.org/10.1093/aob/mcn145
[22] Bradford, M. (1976) A Rapid and Sensitive Method for the Quantification of Microgram Quantities of Protein Utilizing the Principle of Protein Dye Binding. Analytical Biochemistry, 72, 248-254.
http://dx.doi.org/10.1016/0003-2697(76)90527-3
[23] McCord, J.M. and Fridovich, I. (1969) Superoxide Dismutase: An Enzymic Function for Erythrocuprein (Hemocuprein). Journal of Biological Chemistry, 244, 6049-6055.
http://www.jbc.org/content/244/22/6049.abstract
[24] Pérez, C. (2005) Técnicas estadísticas con SPSS 12. Aplicaciones al análisis de datos. Pearson Educación, Madrid.
[25] Cushman, J.C. and Bohnert, H.J. (1999) Crassulacean Acid Metabolism: Molecular Genetics. Annual Review of Plant Biology, 50, 305-332.
http://www.ncbi.nlm.nih.gov/pubmed/15012212
http://dx.doi.org/10.1146/annurev.arplant.50.1.305
[26] Wild, B., Wanek, W., Postl, W. and Richter, A. (2010) Contribution of Carbon Fixed by RubisCO and PEPC to Phloem Export in the Crassulacean Acid Metabolism Plant Kalanchoe daigremontiana. Journal of Experimental Botany, 61, 1375-1383.
http://www.ncbi.nlm.nih.gov/pubmed/20159885
http://dx.doi.org/10.1093/jxb/erq006
[27] Dodd, A.N., Borland, A.M., Haslam, R.P., Griffiths, H. and Maxwell, K. (2002) Crassulacean Acid Metabolism: Plastic, Fantastic. Journal of Experimental Botany, 53, 569-580.
http://www.ncbi.nlm.nih.gov/pubmed/11886877
http://dx.doi.org/10.1093/jexbot/53.369.569
[28] Kluge, M. and Ting, I. (1978) Crassulacean Acid Metabolism: Analysis of an Ecological Adaptation. Springer-Verlag, Berlin.
http://dx.doi.org/10.1007/978-3-642-67038-1
[29] Lüttge, U. (2004) Ecophysiology of Crassulacean Acid Metabolism (CAM). Annals of Botany, 93, 629-652.
http://www.ncbi.nlm.nih.gov/pubmed/15150072
http://dx.doi.org/10.1093/aob/mch087
[30] Jia, H., Liggins, J.R. and Chow, W.S. (2012) Acclimation of Leaves to Low Light Produces Large Grana: The Origin of the Predominant Attractive Force at Work. Philosophical Transactions of the Royal Society B: Biological Sciences, 367, 3494-3502.
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3497075/
http://dx.doi.org/10.1098/rstb.2012.0071
[31] Nobel, P.S. (2009) Physicochemical and Environmental Plant Physiology. 4th Edition, Academic Press, San Diego.
[32] Chen, L.S. and Nose, A. (2004) Day-Night Changes of Energy-Rich Compounds in Crassulacean Acid Metabolism (CAM) Species Utilizing Hexose and Starch. Annals of Botany, 94, 449-455.
http://www.ncbi.nlm.nih.gov/pubmed/15277250
http://dx.doi.org/10.1093/aob/mch165
[33] Ceusters, J., Borland, A.M., Taybi, T., Frans, M., Godts, C. and De Proft, M.P. (2014) Light Quality Modulates Metabolic Synchronization over the Diel Phases of Crassulacean Acid Metabolism. Journal of Experimental Botany, 65, 3705-3714.
http://www.ncbi.nlm.nih.gov/pubmed/24803500
http://dx.doi.org/10.1093/jxb/eru185
[34] Luttge, U. (2000) The Tonoplast Functioning as the Master Switch for Circadian Regulation of Crassulacean Acid Metabolism. Planta, 211, 761-769.
http://www.ncbi.nlm.nih.gov/pubmed/11144260
http://dx.doi.org/10.1007/s004250000408
[35] Borland, A.M., Elliott, S., Patterson, S., Taybi, T., Cushman, J., Pater, B. and Barnes, J. (2006) Are the Metabolic Components of Crassulacean Acid Metabolism Up-Regulated in Response to an Increase in Oxidative Burden? Journal of Experimental Botany, 57, 319-328.
http://www.ncbi.nlm.nih.gov/pubmed/16356942
http://dx.doi.org/10.1093/jxb/erj028