OJAppS  Vol.5 No.12 , December 2015
Effect of Seed Size, Suspension Recycling and Substrate Pre-Treatment on the CVD Growth of Diamond Coatings
CVD growth of uniform conformal polycrystalline diamond (PCD) coatings over complex three dimensional structures is very important material processing technique. It has been found that the nucleation and subsequent growth period is very critical for successful development of CVD diamond based technologies. There are many methods of enhancing diamond nucleation on foreign substrates-ultrasonic treatment with diamond seed suspension being the best among them. A combination of ultrasonic seeding (US) technique with prior treatment (PT) of the substrate under CVD diamond growth conditions for brief period of time, has found to be very effective in enhancing the diamond nucleation during CVD growth—together they are known as NNP. But successive usage of the same seeding suspension up to ten cycles deteriorates the seeding efficiency. 6th seeding cycle onwards the silicon substrates are barely get covered by diamond crystallites. Five different diamond micron grits were used for seeding the silicon substrates and it is observed that US with the sub-micron particles (0.25 μm) is very effective in efficient nucleation of PCD on Si substrates. PT of the substrate somewhat negates the effect of successive use of the same seeding slurry but it is best to avoid recycling of the same seeding suspension using micron size diamond grits.

Cite this paper
Mallik, A. , Bysakh, S. , Bhar, R. , Rotter, S. and Mendes, J. (2015) Effect of Seed Size, Suspension Recycling and Substrate Pre-Treatment on the CVD Growth of Diamond Coatings. Open Journal of Applied Sciences, 5, 747-763. doi: 10.4236/ojapps.2015.512071.
[1]   Angus, J.C. (2014) Diamond Synthesis by Chemical Vapor Deposition: The Early Years. Diamond & Related Materials, 49, 77-86. http://dx.doi.org/10.1016/j.diamond.2014.08.004

[2]   Bundy, F.P., Hall, H.T., Strong, H.M. and Wentorf Jr., R.J. (1955) Manmade Diamond. Nature, 176, 51-54. http://dx.doi.org/10.1038/176051a0

[3]   Eversole, W. (1962) Synthesis of Diamond. US Patent 3,030,188.

[4]   Derjaguin, B.V., Fedoseev, D.V., Lukyanovich, V.M., Spitzin, B.V. and Lavrentyev, A.V. (1968) Filamentary Diamond Crystals. Journal of Crystal Growth, 2, 380-384.

[5]   Spitsyn, B.V., Bouilov, L.L. and Derjaguin, B.V. (1981) Vapor Growth of Diamond on Diamond and Other Surfaces. Journal of Crystal Growth, 52, 219-226. http://dx.doi.org/10.1016/0022-0248(81)90197-4

[6]   Deryagin, B.V., Dzevitsky, B.E., Kochkin, D.A. and Spitsyn, B.V. (1972) Producing Diamonds Synthetically. US Patent 3705937 A.

[7]   Angus, J.C., Will, H.A. and Stanko, W.S. (1968) Growth of Diamond Seed Crystals by Vapor Deposition. Journal of Applied Physics, 39, 2915. http://dx.doi.org/10.1063/1.1656693

[8]   Angus, J.C. (2002) Diamond Films Handbook. Meckel Dekker Inc., New York, 17-26.

[9]   Matsumoto, S., Sato, Y., Tsutsumi, M. and Setaka, N. (1982) Growth of Diamond Particles from Methane-Hydrogen Gas. Journal of Materials Science, 17, 3106-3112. http://dx.doi.org/10.1007/BF01203472

[10]   Kamo, M., Sato, Y., Matsumoto, S. and Setaka, N. (1983) Diamond Synthesis from Gas Phase in Microwave Plasma. Journal of Crystal Growth, 62, 642-644.

[11]   De Vries, R.C. (1987) Synthesis of Diamond under Metastable Conditions. Annual Review of Materials Science, 17, 161-187. http://dx.doi.org/10.1146/annurev.ms.17.080187.001113

[12]   Wang, C.X. and Yang, G.W. (2005) Thermodynamics of Metastable Phase Nucleation at the Nanoscale. Materials Science and Engineering R, 49, 157-202. http://dx.doi.org/10.1016/j.mser.2005.06.002

[13]   Zhang, C.Y., Wang, C.X., Yang, Y.H. and Yang, G.W. (2004) A Nanoscaled Thermodynamic Approach in Nucleation of CVD Diamond on Nondiamond Surfaces. Journal of Physical Chemistry B, 108, 2589-2593.

[14]   Nemanich, R.J., Carlisle, J.A., Hirata, A. and Haenen, K. (2014) CVD Diamond—Research, Applications, and Challenges. MRS Bulletin, 39, 490-494. http://dx.doi.org/10.1557/mrs.2014.97

[15]   Schwander, M. and Partes, K. (2011) A Review of Diamond Synthesis by CVD Processes. Diamond & Related Materials, 20, 1287-1301. http://dx.doi.org/10.1016/j.diamond.2011.08.005

[16]   Mallik, A.K., Mendes, J.C., Rotter, S.Z. and Bysakh, S. (2014) Detonation Nanodiamond Seeding Technique for Nucleation Enhancement of CVD Diamond—Some Experimental Insights. Advances in Ceramic Science and Engineering, 3, 36-45. http://dx.doi.org/10.14355/acse.2014.03.005

[17]   Lee, S.T., Lin, Z. and Jiang, X. (1999) CVD Diamond Films: Nucleation and Growth. Materials Science and Engineering R, 25, 123-154. http://dx.doi.org/10.1016/S0927-796X(99)00003-0

[18]   Smolin, A.A., Ralchenko, V.G., Pimenov, S.M., Kononenko, T.V. and Loubnin, E.N. (1993) Optical Monitoring of Nucleation and Growth of Diamond Films. Applied Physics Letters, 62, 3449-3451.

[19]   Liu, H. and Dandy, D.S. (1995) Studies on Nucleation Process in Diamond CVD: An Overview of Recent Development. Diamond and Related Materials, 4, 1173-1188.

[20]   Popovici, G. and Prelas, M.A. (1992) Nucleation and Selective Deposition of Diamond Thin Films. Physica Status Solidi, 132, 233-252. http://dx.doi.org/10.1002/pssa.2211320202

[21]   Kromka, A., Potocky, S., Cermák, J., Rezek, B., Potměsil, J., Zemek, J. and Vaněcek, M. (2008) Early Stage of Diamond Growth at Low Temperature. Diamond & Related Materials, 17, 1252-1255.

[22]   Chavanne, A., Barjon, J., Vilquin, B., Arabski, J. and Arnault, J.C. (2012) Surface Investigations on Different Nucleation Pathways for Diamond Heteroepitaxial Growth on Iridium. Diamond & Related Materials, 22, 52-58. http://dx.doi.org/10.1016/j.diamond.2011.12.005

[23]   Naguib, N.N., Elam, J.W., Birrell, J., Wang, J., Grierson, D.S., Kabius, B., Hiller, J.M., Sumant, A.V., Carpick, R.W., Auciello, O. and Carlisle, J.A. (2006) Enhanced Nucleation, Smoothness and Conformality of Ultrananocrystalline Diamond (UNCD) Ultrathin Films via Tungsten Interlayers. Chemical Physics Letters, 430, 345-350. http://dx.doi.org/10.1016/j.cplett.2006.08.137

[24]   Mallik, A.K., Binu, S.R., Satapathy, L.N., Narayana, C., Seikh, M.M., Shivashankar, S.A. and Biswas, S.K. (2010) Effect of Substrate Roughness on Growth of Diamond by Hot Filament CVD. Bulletin of Materials Science, 33, 251-255. http://dx.doi.org/10.1007/s12034-010-0039-3

[25]   Lin, S.J., Lee, S.L., Hwang, J., Chang, C.S. and Wen, H.Y. (1992) Effects of Local Facet and Lattice Damage on Nucleation of Diamond Grown by Microwave Plasma Chemical Vapor Deposition. Applied Physics Letters, 60, 1559- 1561. http://dx.doi.org/10.1063/1.107250

[26]   Das, D. and Singh, R.N. (2007) A Review of Nucleation, Growth and Low Temperature Synthesis of Diamond Thin Film. International Materials Reviews, 52, 29-64.

[27]   Bogdanowicz, R., Smietana, M., Gnyba, M., Golunski, L., Ryl, J. and Gardas, M. (2014) Optical and Structural Properties of Polycrystalline CVD Diamond Films Grown on Fused Silica Optical Fibres Pre-Treated by High-Power Sonication Seeding. Applied Physics A, 116, 1927-1937.

[28]   Pobedinskas, P., Janssens, S.D., Hernando, J., Wagnera, P., Nesládek, M. and Haenen, K. (2011) Selective Seeding and Growth of Nanocrystalline CVD Diamond on Non-Diamond Substrates. MRS Proceedings, 1339, 04-02. http://dx.doi.org/10.1557/opl.2011.992

[29]   Fox, O.J.L., Holloway, J.O.P., Fuge, G.M., May, P.W. and Ashfold, M.N.R. (2009) Electrospray Deposition of Diamond Nanoparticle Nucleation Layers for Subsequent CVD Diamond Growth. MRS Proceedings, 1203, J17-J27.

[30]   Iijima, S., Aikawa, Y. and Baba, K. (1990) Early Formation of Chemical Vapor Deposition Diamond Films. Applied Physics Letters, 57, 2646-2648. http://dx.doi.org/10.1063/1.103812

[31]   Liu, X., Yu, T., Wei, Q., Yu, Z. and Xu, X. (2012) Enhanced Diamond Nucleation on Copper Substrates by Employing an Electrostatic Self-Assembly Seeding Process with Modified Nanodiamond Particles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 412, 82-89.

[32]   Arnault, J.C., Demuynck, L., Speisser, C. and Normand, F.L. (1999) Mechanisms of CVD Diamond Nucleation and Growth on Mechanically Scratched Si(100) Surfaces. The European Physical Journal B—Condensed Matter and Complex Systems, 11, 327-343. http://dx.doi.org/10.1007/s100510050943

[33]   Podesta, A., Salerno, M., Ralchenko, V., Bruzzi, M., Sciortino, S., Khmelnitskii, R. and Milani, P. (2006) An Atomic Force Microscopy Study of the Effects of Surface Treatments of Diamond Films Produced by Chemical Vapor Deposition. Diamond & Related Materials, 15, 1292-1299.

[34]   Anger, E., Gicquel, A., Wang, Z.Z. and Ravet, M.F. (1995) Chemical and Morphological Modifications of Silicon Wafers Treated by Ultrasonic Impacts of Powders: Consequences on Diamond Nucleation. Diamond & Related Materials, 4, 759-764. http://dx.doi.org/10.1016/0925-9635(94)05301-4

[35]   Shenderova, O., Hens, S. and McGuire, G. (2010) Seeding Slurries Based on Detonation Nanodiamond in DMSO. Diamond & Related Materials, 19, 260-267. http://dx.doi.org/10.1016/j.diamond.2009.10.008

[36]   Williams, O.A., Douheret, O., Daenen, M., Haenen, K., Osawa, E. and Takahashi, M. (2007) Enhanced Diamond Nucleation on Monodispersed Nanocrystalline Diamond. Chemical Physics Letters, 445, 255-258.

[37]   Ralchenko, V., Saveliev, A., Voronina, S., Dementjev, A., Maslakov, K., Salerno, M., Podesta, A. and Milani, P. (2005) Nanodiamond Seeding for Nucleation and Growth of CVD Diamond Films; Synthesis, Properties and Applications of Ultrananocrystalline Diamond. NATO Science Series, 192, 109-124.

[38]   Chen, Y.C., Zhong, X.Y., Konicek, A.R. and Grierson, D.S. (2008) Synthesis and Characterization of Smooth Ultrananocrystalline Diamond Films via Low Pressure Bias-Enhanced Nucleation and Growth. Applied Physics Letters, 92, Article ID: 133113. http://dx.doi.org/10.1063/1.2838303

[39]   Stoner, B.R., Ma, G.H.M., Wolter, S.D. and Glass, J.T. (1992) Characterization of Bias-Enhanced Nucleation of Diamond on Silicon by Invacuo Surface Analysis and Transmission Electron Microscopy. Physical Review B, 45, 11067- 11084. http://dx.doi.org/10.1103/PhysRevB.45.11067

[40]   Maillard-Schaller, E., Kuttel, O.M., Groning, O., Agostino, R.G., Aebi, P., Schlapbach, L., Wurzinger, P. and Pongratz, P. (1997) Local Heteroepitaxy of Diamond on Silicon (100): A Study of the Interface Structure. Physical Review B, 55, 15895. http://dx.doi.org/10.1103/PhysRevB.55.15895

[41]   Lu, P., Gomez, H., Xiao, X., Lukitsch, M., Durham, D., Sachdeve, A., Kumar, A. and Chou, K. (2013) Coating Thickness and Interlayer Effects on CVD-Diamond Film Adhesion to Cobalt-Cemented Tungsten Carbides. Surface & Coatings Technology, 215, 272-279.

[42]   Chen, H.C., Liu, K.F., Tai, N.H., Pong, W.F. and Lin, I.N. (2010) On the Mechanism of Enhancing the Nucleation Behaviour of UNCD Films by Mo-Coating. Diamond & Related Materials, 19, 134-137.

[43]   Buijnsters, J.G., Vázquez, L., Galindo, R.E. and Meulen, J.J. (2010) Molybdenum Interlayers for Nucleation Enhancement in Diamond CVD Growth. Journal of Nanoscience and Nanotechnology, 10, 2885-2891. http://dx.doi.org/10.1166/jnn.2010.1392

[44]   Li, Y.S., Tang, Y., Yang, Q., Maley, J., Sammynaiken, R., Regier, T., Xiao, C. and Hirose, A. (2010) Ultrathin W-Al Dual Interlayer Approach to Depositing Smooth and Adherent Nanocrystalline Diamond Films on Stainless Steel. ACS Applied Materials & Interfaces, 2, 335-338. http://dx.doi.org/10.1021/am9007159

[45]   Chen, L.J., Tai, N.H., Lee, C.Y. and Lin, I.N. (2007) Effects of Pretreatment Processes on Improving the Formation of Nanocrystalline Diamond. Journal of Applied Physics, 101, Article ID: 064308.

[46]   Sumant, A.V., Auciello, O., Carpick, R.W., Srinivasan, S. and Butler, J.E. (2010) Ultrananocrystalline and Nanocrystalline Diamond Thin Films for MEMS/NEMS Applications. MRS Bulletin, 35, 281-288.

[47]   Remes, Z., Kozak, H., Rezek, B., Ukraintsev, E., Babchenko, O., Kromka, A., Girard, H.A., Arnault, J.C. and Bergonzo, P. (2013) Diamond-Coated ATR Prism for Infrared Absorption Spectroscopy of Surface-Modified Diamond Nanoparticles. Applied Surface Science, 270, 411-417.

[48]   Buijnsters, J.G., Vázquez, L., Dreumel, G.W.J., Meulen, J.J., Enckevort, W.J.P. and Celis, J.P. (2010) Enhancement of the Nucleation of Smooth and Dense Nanocrystalline Diamond Films by Using Molybdenum Seed Layers. Journal of Applied Physics, 108, Article ID: 103514.

[49]   Rotter, S.Z. and Madaleno, J.C. (2009) Diamond CVD by a Combined Plasma Pretreatment and Seeding Procedure. Chemical Vapor Deposition, 15, 209-216. http://dx.doi.org/10.1002/cvde.200806745

[50]   Edelstein, R.S., Gouzman, I., Folman, M., Rotter, S. and Hoffman, A. (1999) Surface Carbon Saturation as a Means of CVD Diamond Nucleation Enhancement. Diamond & Related Materials, 8, 139-145.

[51]   Gouzman, I., Richter, V., Rotter, S. and Hoffman, A.J. (2000) Study of Chemical Vapor Deposition Diamond Film Evolution from a Nanodiamond Precursor by C13 Isotopic Labeling and Ion Implantation. Journal of Vacuum Science & Technology A, 18, 2997. http://dx.doi.org/10.1116/1.1319677

[52]   Feng, Z., Komvipoulos, K., Brown, I.G. and Bogy, D.B. (1993) Effect of Graphitic Carbon Films on Diamond Nucleation by Microwave-Plasma-Enhanced Chemical-Vapor Deposition. Journal of Applied Physics, 74, 2841. http://dx.doi.org/10.1063/1.354636

[53]   Lee, H.J., Jeon, H. and Lee, W.S. (2011) Ultrathin Ultrananocrystalline Diamond Film Synthesis by Direct Current Plasma-Assisted Chemical Vapor Deposition. Journal of Applied Physics, 110, Article ID: 084305.

[54]   Butler, J.E. and Sumant, A.V. (2008) The CVD of Nanodiamond Materials. Chemical Vapor Deposition, 14, 145-160. http://dx.doi.org/10.1002/cvde.200700037

[55]   Sumant, A.V., Gilbert, P.U.P.A., Grierson, D.S., Konicek, A.R., Abrecht, M., Butler, J.E., Feygelson, T., Rotter, S.S. and Carpick, R.W. (2007) Surface Composition, Bonding, and Morphology in the Nucleation and Growth of Ultra- Thin, High Quality Nanocrystalline Diamond Films. Diamond & Related Materials, 16, 718-724. http://dx.doi.org/10.1016/j.diamond.2006.12.011

[56]   Philip, J., Hess, P., Feygelson, T., Butler, J.E., Chattopadhyay, S., Chen, K.H. and Chen, L.C. (2003) Elastic, Mechanical, and Thermal Properties of Nanocrystalline Diamond Films. Journal of Applied Physics, 93, 2164-2171. http://dx.doi.org/10.1063/1.1537465

[57]   Metcalf, T.H., Liu, X., Houston, B.H., Baldwin, J.W., Butler, J.E. and Feygelson, T. (2005) Low Temperature Internal Friction in Nanocrystalline Diamond Films. Applied Physics Letters, 86, 81910.

[58]   Sekaric, L., Parpia, J.M., Craighead, H.G., Feygelson, T., Houston, B.H. and Butler, J.E. (2002) Nanomechanical Resonant Structures in Nanocrystalline Diamond. Applied Physics Letters, 81, 4455-4457.

[59]   Fhaner, M., Zhao, H., Bian, X., Galligan, J.J. and Swain, G.M. (2011) Improvements in the Formation of Boron-Doped Diamond Coatings on Platinum Wires Using the Novel Nucleation Process (NNP). Diamond & Related Materials, 20, 75-83. http://dx.doi.org/10.1016/j.diamond.2010.11.003

[60]   Mallik, A.K., Pal, K.S., Dandapat, N., Guha, B.K., Datta, S. and Basu, D. (2012) Influence of the Microwave Plasma CVD Reactor Parameters on Substrate Thermal Management for Growing Large Area Diamond Coatings inside a 915 MHz and Moderately Low Power Unit. Diamond & Related Materials, 30, 53-61. http://dx.doi.org/10.1016/j.diamond.2012.10.001

[61]   Mallik, A.K., Bysakh, S., Pal, K.S., Dandapat, N., Guha, B.K., Datta, S. and Basu, D. (2013) Large Area Deposition of Polycrystalline Diamond Coatings by Microwave Plasma CVD. Transactions of the Indian Ceramic Society, 72, 225- 232. http://dx.doi.org/10.1080/0371750X.2013.870768