CS  Vol.6 No.12 , December 2015
Design of Dual-Mode Substrate Integrated Waveguide Band-Pass Filters
ABSTRACT
Three dual-mode band-pass filters are presented in the present paper. The first filter is realized by dual-mode substrate integrated waveguide (SIW) cavity; the second is based on the integration of SIW cavity with electromagnetic band gap (EBG); and the third is based on the integration of SIW cavity with complementary split ring resonator (CSRR). The dual-mode SIW cavity is designed to have a fractional bandwidth of 4.95% at the midband frequency of 9.08 GHz; the proposed EBG-SIW resonator operates at 9.12 GHz with a bandwidth of 4.38% and the CSRR-SIW resonator operates at 8.66 GHz with a bandwidth of 2.54%. The proposed filters have the high Q-factors and generate a transmission zero in upper stopband, and these by the use of Rogers RT/duriod 5880 (tm).

Cite this paper
Rhbanou, A. , Sabbane, M. and Bri, S. (2015) Design of Dual-Mode Substrate Integrated Waveguide Band-Pass Filters. Circuits and Systems, 6, 257-267. doi: 10.4236/cs.2015.612026.
References
[1]   Cassivi, Y., Perregrini, L., Arcioni, P., Bressan, M., Wu, K. and Conciauro, G. (2002) Dispersion Characteristics of Substrate Integrated Rectangular Waveguide. IEEE Microwave and Wireless Components Letters, 12, 333-335.
http://dx.doi.org/10.1109/LMWC.2002.803188

[2]   Deslandes, D. and Wu, K. (2006) Accurate Modeling, Wave Mechanism, and Design Consideration of a Substrate Integrated Waveguide. IEEE Transactions on Microwave Theory and Techniques, 54, 2516-2526.
http://dx.doi.org/10.1109/TMTT.2006.875807

[3]   Djerafi, T. and Wu, K. (2007) Super-Compact Substrate Integrated Waveguide Cruciform Directional Coupler. IEEE Microwave and Wireless Components Letters, 17, 757-759.
http://dx.doi.org/10.1109/LMWC.2007.908040

[4]   Su, P., Tang, Z.-X. and Zhang, B. (2012) Push-Push Dielectric Resonator Oscillator Using Substrate Integrated Waveguide Power Combiner. Progress in Electromagnetics Research Letters, 30, 105-113.
http://dx.doi.org/10.2528/PIERL11122302

[5]   Huang, Y., Shao, Z. and Liu, L. (2013) A Substrate Integrated Waveguide Bandpass Filter Using Novel Defected Ground Structure Shape. Progress in Electromagnetics Research, 135, 201-213.
http://dx.doi.org/10.2528/PIER12110411

[6]   Zhang, X.-C., Yu, Z.-Y. and Xu, J. (2007) Novel Band-Pass Substrate Integrated Waveguide (SIW) Filter Based on Complementary Split Ring Resonators (CSRRS). Progress in Electromagnetics Research, 72, 39-46.
http://dx.doi.org/10.2528/PIER07030201

[7]   Xu, F. and Wu, K. (2005) Guided-Wave and Leakage Characteristics of Substrate Integrated Waveguide. IEEE Transactions on Microwave Theory and Techniques, 53, 66-73.
http://dx.doi.org/10.1109/TMTT.2004.839303

[8]   Cassivi, Y., Perregrini, L., Wu, K. and Conciauro, G. (2002) Low-Cost and High-Q Millimeter-Wave Resonator Using Substrate Integrated Waveguide Technique. The 32nd European Microwave Conference, Milan, 23-26 September 2002, 1-4.
http://dx.doi.org/10.1109/euma.2002.339390

[9]   Rhbanou, A., Bri, S. and Sabbane, M. (2015) Design of X-Band Substrate Integrated Waveguide Bandpass Filter with Dual High Rejection. Microwave and Optical Technology Letters, 57, 1744-1752.
http://dx.doi.org/10.1002/mop.29180

[10]   Deslandes, D. (2010) Design Equations for Tapered Microstrip-to-Substrate Integrated Waveguide Transitions. 2010 IEEE MTT-S International Microwave Symposium Digest (MTT), Anaheim, 23-28 May 2010, 704-707.
http://dx.doi.org/10.1109/MWSYM.2010.5517884

[11]   Kyriazidou, C.A., Contopanagos, H.F. and Alexopoulos, N.G. (2001) Monolithic Waveguide Filters Using Printed Photonic-Bandgap Materials. IEEE Transactions on Microwave Theory and Techniques, 49, 297-307.
http://dx.doi.org/10.1109/22.903089

[12]   Falcone, F., Lopetegi, T. and Sorolla, M. (1999) 1-D and 2-D Photonic Bandgap Microstrip Structures. Microwave and Optical Technology Letters, 22, 411-412.
http://dx.doi.org/10.1002/(SICI)1098-2760(19990920)22:6<411::AID-MOP13>3.0.CO;2-U

[13]   Garcia-Garcia, J., Bonache, J., Gil, I., Martin, F., Marqués, R., Falcone, F., Lopetegi, T., Laso, M.A.G. and Sorolla, M. (2005) Comparison of Electromagnetic Band Gap and Split-Ring Resonator Microstrip Lines as Stop Band Structures. Microwave and Optical Technology Letters, 44, 376-379.
http://dx.doi.org/10.1002/mop.20640

[14]   Hao, Z.-C., Hong, W., Chen, J.-X., Chen, X.-P. and Wu, K. (2005) Compact Super-Wide Bandpass Substrate Integrated Waveguide (SIW) Filters. IEEE Transactions on Microwave Theory and Techniques, 53, 2968-2977.
http://dx.doi.org/10.1109/TMTT.2005.854232

[15]   Li, D., Tong, C.-M., Bao, J.-S., Peng, P. and Yu, D.-W. (2013) A Novel Bandpass Filter of Substrate Integrated Waveguide (SIW) Based on S-Shaped EBG. Progress in Electromagnetics Research Letters, 36, 191-200.
http://dx.doi.org/10.2528/PIERL12110202

[16]   Bonache, J., Gil, I., Garcia-Garcia, J. and Martin, F. (2006) Novel Microstrip Bandpass Filters Based on Complementary Split-Ring Resonators. IEEE Transactions on Microwave Theory and Techniques, 54, 265-271.
http://dx.doi.org/10.1109/TMTT.2005.861664

[17]   Dong, Y.D., Yang, T. and Itoh, T. (2009) Substrate Integrated Waveguide Loaded by Complementary Split-Ring Resonators and Its Applications to Miniaturized Waveguide Filters. IEEE Transactions on Microwave Theory and Techniques, 57, 2211-2223.
http://dx.doi.org/10.1109/TMTT.2009.2027156

[18]   O’Brien, S. and Pendry, J.B. (2002) Magnetic Activity at Infrared Frequencies in Structured Metallic Photonic Crystals. Journal of Physics: Condensed Matter, 14, 6383-6394.
http://dx.doi.org/10.1088/0953-8984/14/25/307

[19]   Baena, J.D., Bonache, J., Martin, F., Sillero, R.M., Falcone, F., Lopetegi, T., Laso, M.A.G., Garcia-Garcia, J., Gil, I., Portillo, M.F. and Sorolla, M. (2005) Equivalent-Circuit Models for Split-Ring Resonators and Complementary Split-Ring Resonators Coupled to Planar Transmission Lines. IEEE Transactions on Microwave Theory and Techniques, 53, 1451-1461.
http://dx.doi.org/10.1109/TMTT.2005.845211

[20]   Bilotti, F., Toscano, A. and Vegni, L. (2007) Design of Spiral and Multiple Split Ring Resonators for the Realization of Miniaturized Metamaterial Samples. IEEE Transactions on Antennas and Propagation, 55, 2258-2267.
http://dx.doi.org/10.1109/TAP.2007.901950

[21]   Lin, Y.-F., Chen, C.-H., Chen, K.-Y., Chen, H.-M. and Wong, K.-L. (2007) A Miniature Dual-Mode Bandpass Filter Using Al2O3 Substrate. IEEE Microwave and Wireless Components Letters, 17, 580-582.
http://dx.doi.org/10.1109/LMWC.2007.901766

[22]   Huang, X.D. and Cheng, C.H. (2006) A Novel Coplanar-Waveguide Bandpass Filter Using a Dual-Mode Square-Ring Resonator. IEEE Microwave and Wireless Components Letters, 16, 13-15.
http://dx.doi.org/10.1109/LMWC.2005.861358

[23]   Li, R.Q., Tang, X.H. and Xiao, F. (2010) Substrate Integrated Waveguide Dual-Mode Filter Using Slot Lines Perturbation. Electronics Letters, 46, 845-846.
http://dx.doi.org/10.1049/el.2010.0629

[24]   Wu, L.-S., Zhou, X.-L., Wei, Q.-F. and Yin, W.-Y. (2009) An Extended Doublet Substrate Integrated Waveguide (SIW) Bandpass Filter with a Complementary Split Ring Resonator (CSRR). IEEE Microwave and Wireless Components Letters, 19, 777-779.
http://dx.doi.org/10.1109/LMWC.2009.2033497

 
 
Top