JSEMAT  Vol.1 No.2 , July 2011
AZ91 Magnesium Alloys: Anodizing of Using Environmental Friendly Electrolytes
Abstract: An anodizing process, based on environmental friendly electrolyte solutions has been studied on AZ 91 magnesium alloys by using three types of electrolytes: the first is based on sodium silicate, the second on sodium hydroxide-boric acid-borax and the third on sodium silicate- potassium hydroxide-sodium carbonate-sodium tetra borate. A pretreatment including fluoride activation was applied before the anodizing process. It was found that the anodic film thickness increases as current density or anodizing voltage increases. It is also increased with deposition time until the deposition stops due to the formation of a thick anodic film. Optimization of the anodizing conditions - current density and deposition time- was made for each electrolyte. Characterization of anodizing layer was achieved by determination of surface morphology, microstructure, phase analysis, coat thickness, adhesion and corrosion resistance. In all cases, excellent adhesion and corrosion resistance was obtained. A corrosion efficiency ranging from 94% to 97% was reached; the highest value corresponding to the third electrolyte.
Cite this paper: nullN. Mahallawy, M. Shoeib and M. Abouelenain, "AZ91 Magnesium Alloys: Anodizing of Using Environmental Friendly Electrolytes," Journal of Surface Engineered Materials and Advanced Technology, Vol. 1 No. 2, 2011, pp. 62-72. doi: 10.4236/jsemat.2011.12010.

[1]   G. L. Song, A. Atrens, D. Stjohn, J. Nairn and Y. Li, “The Electrochemical Corrosion of Pure Magnesium in 1N NaCl,” Corrossion Science, Vol. 39, No. 5, 1997, pp.855-856. doi:10.1016/S0010-938X(96)00172-2

[2]   A. J. Zozulin and D. E. Bartak, “Anodized Coatings for Magnesium Alloys,” Metal Finishing, Vol. 92 No. 3, 1994, pp.39-42.

[3]   J. E. Gray and B. Luan, “Protective Coatings on Magnesium and Its Alloys — A Critical Review,” Journal of Alloys Compounds, Vol. 336, No. 1-2, 2002, pp. 88-13. doi:10.1016/S0925-8388(01)01899-0

[4]   E. Ghali and W. Dietzel, “General and Localized Corrosion of Magnesium Alloys: A Critical Review,” Journal of Materials Engnerring and Performance, Vol. 13, No. 1, 2004, pp. 7-23. doi:10.1361/10599490417533

[5]   Y. Zhang, C. Yan, F. Wang, H. Lou and C. Cao, “Study on the. Environmentally Friendly Anodizing of AZ91D Magnesium Alloy,” Surface and Coating Technology, Vol. 161, No. 1, 2002, pp. 36-43. doi:10.1016/S0257-8972(02)00342-0

[6]   C. K. Mittal, “Chemical Conversion and Anodized Coatings,” Transactions of the Metal Finishers Association of India, Vol. 4, 1995, pp. 227-231.

[7]   A. K. Ehmeda “Anodizing of Magnesium Alloy (AZ91D) in Extreme Alkaline and Acidic Media,” MSC Thesis, Tabbin Institute for Metallurgical Studies, Cairo, 2008

[8]   W. Li , L. Zhu and H. Liu , “Preparation of Hydrophobic Anodic Film on AZ91D Magnesium Alloy in Silicate Solution Containing Silica Sol,” Surface and Coatings Technology, Vol. 201, No. 6, 2006, pp. 2573-2577. doi:10.1016/j.surfcoat.2006.04.068

[9]   C. S. Wu, Z. Zhang, F. H. Cao, L. J. Zhang, J. Q. Zhang and C. N. Cao, “Study on the Anodizing of AZ31 Magnesium Alloys in Alkaline Borate Solutions,” Applied Surface Science, Vol. 253, No. 8, 2007, pp. 3893-3898. doi:10.1016/j.apsusc.2006.08.020

[10]   M. Hara, K. Jimatsuda, W. Yamauchi, M. Sakaguchi and T. Yoshikata. “Optimization of Environmentally Friendly Anodic Oxide Film for Magnesium Alloys,” Materials Transactions, Vol. 47, No. 4, 2006, pp. 1013-1019. doi:10.2320/matertrans.47.1013

[11]   O. Khaselev, J. Yahalom and J. Electrochem. “Constant Voltage Anodizing of Mg-Al Alloys in KOH-Al (OH) (3) Solutions,” Journal of the Electrochemical Society, Vol. 145, No. 1, 1998, pp. 190-193. doi:10.1149/1.1838234

[12]   A. K. Sharma, R. Uma Rani and K. Giri, “Studies on Anodization of Magnesium Alloy for Thermal Control Applications,” Metal Finishing, Vol. 95, No. 3, 1997, pp.43-54. doi:10.1016/S0026-0576(97)86772-4

[13]   J. Yahalom and J. Zahavi, “Experimental Evaluation of Some Electrolytic Breakdown Hypotheses,” Electrochimica Acta, Vol. 16, No. 5, 1971, pp. 603. doi:10.1016/0013-4686(71)85169-1

[14]   R. F. Zhang, D. Y. Shan, R. S. Chen and E. H. Han, “Effects of Electric Parameters on Properties of Anodic Coatings Formed on Magnesium Alloys,” Materials Chemistry and Physics, Vol. 107, No. 2-3, 2008, pp. 356-363. doi:10.1016/j.matchemphys.2007.07.027

[15]   Y. Zhang and C. Yan, “Development of Anodic Film on Mg Alloy AZ91D,” Surface and Coatings Technology, Vol. 201, No. 6, 2006, pp. 2381-2386. doi:10.1016/j.surfcoat.2006.04.015

[16]   X. Zhou, G. E. Thompson, P. Skeldon, G. C. Wood, K. Shimizu and H. Habazaki, “Film Formation and Detachment During Anodizing of Al-Mg Alloys”, Corrosion Science, Vol. 41, No. 8, 1999, pp. 1599-1605. doi:10.1016/S0010-938X(99)00007-4

[17]   H. F. Guo, M. Z. An, H. B. Huo and S. Xu, “Microstructure Characteristic of Ceramic Coatings Fabricated on Magnesium Alloys by Micro-Arc Oxidation in Alkaline Silicate Solutions,” Applied Surface Science, Vol. 252, No. 22, 2005, pp. 2187-2191. doi:10.1016/j.apsusc.2005.09.067

[18]   P. Zhang, X. Nie and D. O. Northwood, “Influence of Coating Thickness on the Galvanic Corrosion Properties of Mg Oxide in an Engine Coolant,” Surface and Coating Technology, Vol. 203, No. 20-21, 2009, pp. 3271-3277. doi:10.1016/j.surfcoat.2009.04.012

[19]   S. Sun, J. Liu, C. Yan and F. Wang, “A Novel Process for Electroless Nickel Plating on Anodized Magnesium Alloy,” Applied Surface Science, Vol. 254, No. 16, 2008, pp. 5016-5022. doi:10.1016/j.apsusc.2008.01.169

[20]   S. Adachi and K.Nakata, “A Novel Process for Electroless Nickel Plating on Anodized Magnesium Alloy,” Plasma Processes and Polymers, Vol. 4, No. S1, 2007, pp. 512-515. doi:10.1002/ppap.200731217