AJCC  Vol.4 No.5 , December 2015
Characteristic of Ionospheric foF2 and Solar Indices during the 23rd Solar Cycle over High Latitude Station, Syowa, Antarctica
ABSTRACT
The behavior and dynamics of ionosphere are completely dependent on the solar activity. We have investigated the long term variability of ionospheric parameter foF2 with corresponding changes in the solar activity during the 23rd solar cycle. The variation of the critical frequency of ionospheric foF2 at Syowa Station Antarctica, (69°S, 39°E) is examined with four different solar activity indices characterizing the long term variability of solar activity wise Flare Index, relative sunspot number (Rz), solar flux F10.7 cm and CME occurrence index. We compared the dependency of foF2 and other solar activity indices on each other by using linear correlation investigation, and showed the qualitative similarity of the ionospheric foF2 with the solar indices. We notice that hysteresis of foF2 is lower for the growing branches of the solar cycle. The individual dissimilarity of critical frequency foF2 demonstrated the dependency on the solar cycle but this variation was different during the months, which depended on solar activity and polar ionospheric behavior. The peak to peak variation between monthly average of critical frequency foF2 and solar indices parameter is evidence for the absolute dependency for each other. The linear correlation between the solar indices and foF2 is very strong during the climbing and downward branches of the solar cycle. However the incline of their linear fits shows variations from index to index.

Cite this paper
Bhawre, P. , Kishore, K. , Dogra, S. , Purohit, P. , Waheed, M. , Khatarkar, P. and Atulkar, R. (2015) Characteristic of Ionospheric foF2 and Solar Indices during the 23rd Solar Cycle over High Latitude Station, Syowa, Antarctica. American Journal of Climate Change, 4, 408-416. doi: 10.4236/ajcc.2015.45033.
References
[1]   Ozguc, A., Atac, T. and Pektas, R. (2007) Examination of the Solar Variation of foF2 for Cycle 22 and 23. Journal of Atmospheric and Solar Terrestrial Physics, 70, 268-276.
http://www.koeri.boun.edu.tr/sismo/Personel/pektas/files/JASTP_article_2008.pdf
http://dx.doi.org/10.1016/j.jastp.2007.08.016


[2]   Muggleton, L.M. (1969) Secular Variation in F-Region Response to Sunspot Number. Journal of Atmospheric and Terrestrial Physics, 31, 1413-1419.
http://www.sciencedirect.com/science/article/pii/0021916969900336
http://dx.doi.org/10.1016/0021-9169(69)90033-6


[3]   Naismith, R. and Smith, P.A. (1961) Further Evidence of a Long-Term Variation in the Relationship of Solar Activity to the Ionosphere. Journal of Atmospheric and Terrestrial Physics, 22, 270-274.
http://www.sciencedirect.com/science/article/pii/002191696190215X
http://dx.doi.org/10.1016/0021-9169(61)90215-X


[4]   Naismith, R., Bevan, H.C. and Smith, P.A. (1961) A Long Term Variation in the Relationship of Sunspot Numbers to E-Region Character Figures. Journal of Atmospheric and Terrestrial Physics, 21, 167-173.
http://www.sciencedirect.com/science/article/pii/0021916961901088
http://dx.doi.org/10.1016/0021-9169(61)90108-8


[5]   Huang, Y.N. (1963) The Hysteresis Variation of the Semi-Thickness of the F2-Layer and Its Relevant Phenomenon at Kokobunji, Japan. Journal of Atmospheric and Terrestrial Physics, 25, 647-658.
http://www.sciencedirect.com/science/article/pii/0021916963901594
http://dx.doi.org/10.1016/0021-9169(63)90159-4


[6]   Rao, M.S.V.G. and Rao, R.S. (1969) The Hysteresis Variation in F2-Layer Parameters. Journal of Atmospheric and Terrestrial Physics, 31, 1119-1125.
http://www.sciencedirect.com/science/article/pii/002191696990110X
http://dx.doi.org/10.1016/0021-9169(69)90110-X


[7]   Lakshimi, D.R., Reddy, B.M. and Dabas, R.S. (1998) On the Possible Use of Recent EUV Data for Ionospheric Prediction. Journal of Atmospheric and Terrestrial Physics, 50, 207-213.
http://www.sciencedirect.com/science/article/pii/0021916988900694
http://dx.doi.org/10.1016/0021-9169(88)90069-4


[8]   Kane, R.P. (1992) Sunspots, Solar Radio Noise, Solar EUV and Ionospheric foF2. Journal of Atmospheric and Terrestrial Physics, 54, 463-466.
http://adsabs.harvard.edu/abs/1992JATP...54..463K
http://dx.doi.org/10.1016/0021-9169(92)90025-G


[9]   Kleczek, J. (1952) Solar Flare Index. Publication of Astrophysical Observatory, No. 24, Prague.

[10]   Atac, T. and Ozguc, A. (2006) Overview of the Solar Activity during Solar Cycle 23. Solar Physics, 233, 139-153.
http://link.springer.com/article/10.1007%2Fs11207-006-1112-3
http://dx.doi.org/10.1007/s11207-006-1112-3


[11]   Ozguc, A., Atac, T. and Rybak, J. (2002) Flare Index Variability in the Ascending Branch of Solar Cycle 23. Journal of Geophysical Research, 107, SHH11-1-SHH11-8.
http://web.boun.edu.tr/ozguc/Presentations/Longmont.pdf

[12]   Atac, T. and Ozguc, A. (2001) Flare Index during the Rising Phase of Solar Cycle 23. Solar Physics, 198, 399-407.
http://www.koeri.boun.edu.tr/astronomy/flare_index/article02.pdf
http://dx.doi.org/10.1023/A:1005218315298


[13]   Knoska, S. and Petrasek, J. (1984) Chromospheric Flare Activity in Solar Cycle 20. Contributions of the Astronomical Observatory Skalnate Pleso, 12, 165-260.
http://articles.adsabs.harvard.edu/cgi-bin/nph-iarticle_query?1984CoSka..12..165K&defaultprint=YES&filetype=.pdf

[14]   Atac, T. (1987) Time Variation of the Flare Index during the 21st Solar Cycle. Astrophysics and Space Science, 135, 201-205.
http://link.springer.com/article/10.1007%2FBF00644477

[15]   Kane, R.P. (2009) Fluctuations of Solar Activity during the Declining Phase of the 11 Year Sunspot Cycle. Solar Physics, 255, 163-168.
http://link.springer.com/article/10.1007%2Fs11207-008-9303-8
http://dx.doi.org/10.1007/s11207-008-9303-8


[16]   Sethi, N.K., Goel, M.K. and Mahajan, K.K. (2002) Solar Cycle Variations of foF2 from IGY to 1990. Annales Geophysicae, 20, 1677-1685.
http://www.ann-geophys.net/20/1677/2002/angeo-20-1677-2002.pdf

[17]   Smith, P.A. and King, J.W. (1981) Long-Term Relationships between Sunspots, Solar Faculae and the Ionosphere. Journal of Atmospheric and Terrestrial Physics, 43, 1057-1063.
http://dx.doi.org/10.1016/0021-9169(81)90020-9
http://www.sciencedirect.com/science/article/pii/0021916981900209


[18]   Ozguc, A., Atac, T. and Rybak, J. (2003) Temporal Variability of the Flare Index (1966-2001). Solar Physics, 214, 375-397.
http://www.koeri.boun.edu.tr/astronomy/flare_index/article03.pdf
http://dx.doi.org/10.1023/A:1024225802080


[19]   Legrand, J.P. and Simon, P.A. (1985) Some Solar Cycle Phenomena Related to the Geomagnetic Activity from 1868 to 1980. Astronomy and Astrophysics, 152, 199-204.
http://articles.adsabs.harvard.edu/full/1985A%26A...152..199L

[20]   Abramenko, V., Yurchyshyn, V., Linker, J., Mikic, Z., Luhmann, J. and Lee, C.O. (2010) Low-Latitude Coronal Holes at the Minimum of the 23rd Solar Cycle. The Astrophysical Journal, 712, 813-818.
http://iopscience.iop.org/article/10.1088/0004-637X/712/2/813/pdf

[21]   Araujo-Pradere, E.A., Fuller-Rowell, T.J. and Codrescu, M.V. (2002) STORM: An Empirical Storm Time Ionospheric Correction Model 1. Model Description. Radio Science, 37, 4-1-4-14.
http://onlinelibrary.wiley.com/doi/10.1029/2002RS002620/full

[22]   Field, P.R. and Rishbeth, H. (1997) The Response of the Ionospheric F2-Layer to Geomagnetic Activity: An Analysis of Worldwide Data. Journal of Atmospheric and Terrestrial Physics, 59, 163-180.
http://www.sciencedirect.com/science/article/pii/S1364682696000855
http://dx.doi.org/10.1016/S1364-6826(96)00085-5


[23]   Fuller-Rowell, T.J., Codrescu, M.C. and Wilkinson, P. (2000) Quantitative Modeling of the Ionospheric Response to Geomagnetic Activity. Annales Geophysicae, 18, 766-781.
http://dx.doi.org/10.1007/s00585-000-0766-7

[24]   Rishbeth, H. and Field, P.R. (1997) Latitude and Solar-Cycle Patterns in the Response of the Ionosphere F2-Layer to Geomagnetic Activity. Advances in Space Research, 20, 1689-1692.
http://dx.doi.org/10.1016/S0273-1177(97)00573-5
http://www.sciencedirect.com/science/article/pii/S0273117797005735


[25]   Kane, R.P. (2006) Are the Double-Peaks in Solar Indices during Solar Maxima of Cycle 23 Reflected in Ionospheric foF2. Journal of Atmospheric and Terrestrial Physics, 68, 877-880.
http://dx.doi.org/10.1016/j.jastp.2006.02.003
http://www.sciencedirect.com/science/article/pii/S1364682606000460


[26]   Ozguc, A., Tulunay, Y. and Atac, T. (1998) Examination of the Solar Cycle Variation of foF2 by Using Solar Flare Index for the Cycle 21. Advances in Space Research, 22, 139-142.
http://dx.doi.org/10.1016/S0273-1177(97)01114-9
http://www.sciencedirect.com/science/article/pii/S0273117797011149


[27]   Hathaway D.H., Nandy, D., Wilson, R.M. and Reichmann, E.J. (2003) Evidence That a Deep Meridional Flow Sets the Sunspot Cycle Period. Astrophysical Journal, 589, 665-670.
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.149.6206&rep=rep1&type=pdf

[28]   Ortiz de Adler, N. and Elias, A.G. (2008) Latitudinal Variation of foF2 Hysteresis of Solar Cycle 20, 21, and 22 and Its Application to the Analysis of Long-Term Trends. Annales Geophysicae, 26, 1269-1273.
http://www.ann-geophys.net/26/1269/2008/angeo-26-1269-2008.pdf
http://dx.doi.org/10.5194/angeo-26-1269-2008


[29]   Hathaway, D.H. (1996) Doppler Measurements of the Sun’s Meridional Flow. Astrophysical Journal, 460, 1027.
https://archive.org/details/nasa_techdoc_19970022597
http://dx.doi.org/10.1086/177029

[30]   Kane, R.P. (2009) Fluctuations of Solar Activity during the Declining Phase of the 11 Year Sunspot Cycle. Solar Physics, 255, 163-168.
http://link.springer.com/article/10.1007%2Fs11207-008-9303-8
http://dx.doi.org/10.1007/s11207-008-9303-8


 
 
Top