Back
 JAMP  Vol.3 No.12 , December 2015
Thermal Properties and Phonon Dispersion of Bi2Te3 and CsBi4Te6 from First-Principles Calculations
Abstract: The narrow-gap semiconductor CsBi4Te6 is a promising material for low temperature thermoelectric applications. Its thermoelectric property is significantly better than the well-explored, high-performance thermoelectric material Bi2Te3 and related alloys. In this work, the thermal expansion and the heat capacity at constant pressure of CsBi4Te6 are determined within the quasiharmonic approximation within the density functional theory. Comparisons are made with available experimental data, as well as with calculated and measured data for Bi2Te3. The phonon band structures and the partial density of states are also investigated, and we find that both CsBi4Te6 and Bi2Te3 exhibit localized phonon states at low frequencies. At high temperatures, the decrease of the volume expansion with temperature indicates the potential of a good thermal conductivity in this temperature region.
Cite this paper: Li, S. and Persson, C. (2015) Thermal Properties and Phonon Dispersion of Bi2Te3 and CsBi4Te6 from First-Principles Calculations. Journal of Applied Mathematics and Physics, 3, 1563-1570. doi: 10.4236/jamp.2015.312180.
References

[1]   Chung, D.Y., Hogan, T., Brazis, P., Rocci-Lane, M., Kannewurf, C., Bastea, M., Uher, C. and Kanatzidis, M.G. (2000) CsBi4Te6: A High-Performance Thermoelectric Material for Low-Temperature Applications. Science, 287, 1024.
http://dx.doi.org/10.1126/science.287.5455.1024

[2]   Youn, S.J. and Freeman, A.J. (2001) First-Principles Electronic Structure and Its Relation to Thermoelectric Properties of Bi2Te3. Physical Review B, 63, Article ID: 085112.
http://dx.doi.org/10.1103/PhysRevB.63.085112

[3]   Tritt, T.M. (1999) Holey and Unholey Semiconductors. Science, 283, 804.
http://dx.doi.org/10.1126/science.283.5403.804

[4]   Sofo, J.O. and Mahan, G.D. (1998) Electronic Structure of CoSb3: A Narrow-Band-Gap Semiconductor. Physical Review B, 58, 15620.
http://dx.doi.org/10.1103/PhysRevB.58.15620

[5]   Bell, L.E. (2008) Cooling, Heating, Generating Power, and Recovering Waste Heat with Thermoelectric Systems. Science, 321, 1457.
http://dx.doi.org/10.1126/science.1158899

[6]   Katsuki, S. (1969) The Band Structure of Bismuth Telluride. Journal of the Physical Society of Japan, 26, 58.
http://dx.doi.org/10.1143/JPSJ.26.58

[7]   Larson, P., Mahanti, S.D., Chung, D.-Y. and Kanatzidis, M.G. (2002) Electronic Structure of CsBi4Te6: A High-Performance Thermoelectric at Low Temperatures. Physical Review B, 65, 45205.
http://dx.doi.org/10.1103/PhysRevB.65.045205

[8]   Lykke, L., Iversen, B.B. and Madesen, G.K.H. (2006) Electronic Structure and Transport in the Low-Temperature Thermoelectric CsBi4Te6: Semiclassical Transport Equations. Physical Review B, 73, Article ID: 195121.
http://dx.doi.org/10.1103/PhysRevB.73.195121

[9]   Biernacki, S. and Scheffler, M. (1989) Negative Thermal Expansion of Diamond and Zinc-Blende Semiconductors. Physical Review Letters, 63, 290.
http://dx.doi.org/10.1103/PhysRevLett.63.290

[10]   Pavone, P., Karch, K., Schutt, O., Strauch, D., Windl, W., Giannozzi, P. and Baroni S. (1993) Ab Initio Lattice Dynamics of Diamond. Physical Review B, 48, 3156.
http://dx.doi.org/10.1103/PhysRevB.48.3156

[11]   Nie, Y.Z. and Xie, Y.Q. (2007) Ab Initio Thermodynamics of the HCP Metals Mg, Ti, and Zr. Physical Review B, 75, Article ID: 174117.
http://dx.doi.org/10.1103/PhysRevB.75.174117

[12]   Togo, A., Chaput, L., Tanaka, I. and Hug, G. (2010) First-Principles Phonon Calculations of Thermal Expansion in Ti3SiC2, Ti3AlC2, and Ti3GeC2. Physical Review B, 81, Article ID: 174301.
http://dx.doi.org/10.1103/PhysRevB.81.174301

[13]   Li, D.-L., Chen, P., Yi, J.-X., Tang, B.-Y., Peng, L.-M. and Ding, W.-J. (2009) Ab Initio Study on the Thermal Properties of the FCC Al3Mg and Al3Sc Alloys. Journal of Physics D: Applied Physics, 42, Article ID: 225407.
http://dx.doi.org/10.1088/0022-3727/42/22/225407

[14]   Xu, L.-C., Wang, R.-Z., Yang, X.-D. and Yan, H. (2011) Thermal Expansions in Wurtzite AlN, GaN, and InN: First-Principle Phonon Calculations. Journal of Applied Physics, 110, Article ID: 043528.
http://dx.doi.org/10.1063/1.3627237

[15]   Kresse, G. and Hafner, J. (1993) Ab Initio Molecular Dynamics for Liquid Metals. Physical Review B, 47, 558-561.
http://dx.doi.org/10.1103/PhysRevB.47.558

[16]   Kresse, G. and Furthmüller, J. (1996) Efficient Iterative Schemes for ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set. Physical Review B, 54, 11169-11186.
http://dx.doi.org/10.1103/PhysRevB.54.11169

[17]   Perdew, J.P., Burke, K. and Ernzerhof, M. (1996) Generalized Gradient Approximation Made Simple. Physical Review Letters, 77, 3865-3868.
http://dx.doi.org/10.1103/PhysRevLett.77.3865

[18]   Vinet, P., Rose, J.H., Ferrante, J. and Smith, J.R. (1989) Universal Features of the Equation of State of Solids. Journal of Physics: Condensed Matter, 1, 1941-1963.
http://dx.doi.org/10.1088/0953-8984/1/11/002

[19]   Togo, A., Oba, F. and Tanaka, I. (2008) First-Principles Calculations of the Ferroelastic Transition between Rutile-Type and CaCl2-Type SiO2 at High Pressures. Physical Review B, 78, Article ID: 134106.
http://dx.doi.org/10.1103/PhysRevB.78.134106

[20]   Pavlova, L.M., Shtern, Y.I. and Mironov, R.E. (2011) Thermal Expansion of Bismuth Telluride. High Temperature, 49, 369-379.
http://dx.doi.org/10.1134/S0018151X1103014X

[21]   Gorbachuk, N.P., Bolgar, A.S., Sidorko, V.R. and Goncharuk, L.V. (2004) Heat Capacity and Enthalpy of Bi2Si3 and Bi2Te3 in the Temperature Range 58-1012 K. Powder Metallurgy and Metal Ceramics, 43, 284-290.
http://dx.doi.org/10.1023/B:PMMC.0000042464.28118.a3

[22]   Zwanziger, J.W. (2007) Phonon Dispersion and Grüneisen Parameters of Zinc Dicyanide and Cadmium Dicyanide from First Principles: Origin of Negative Thermal Expansion. Physical Review B, 76, Article ID: 052102.
http://dx.doi.org/10.1103/physrevb.76.052102

 
 
Top